US009178852B2

a2 United States Patent

Bettini et al.

(10) Patent No.: US 9,178,852 B2
(45) Date of Patent: *Nov. 3, 2015

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

IN-LINE FILTERING OF INSECURE OR
UNWANTED MOBILE DEVICE SOFTWARE
COMPONENTS OR COMMUNICATIONS

Applicant: Appthority, Inc., San Francisco, CA
(US)

Inventors: Anthony John Bettini, San Francisco,
CA (US); Kevin Watkins, San
Francisco, CA (US); Domingo J.
Guerra, San Francisco, CA (US);
Michael Price, San Ramon, CA (US)

Assignee: Appthority, Inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/331,151
Filed: Jul. 14, 2014

Prior Publication Data

US 2014/0331281 Al Now. 6, 2014

Related U.S. Application Data

Continuation of application No. 13/740,061, filed on
Jan. 11, 2013, now Pat. No. 8,819,772.

Provisional application No. 61/664,109, filed on Jun.
25, 2012, provisional application No. 61/692,156,
filed on Aug. 22, 2012.

Int. Cl1.

GO6F 21/56 (2013.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... HO4L 63/0227 (2013.01); HO4L 63/0245

(2013.01)

(58) Field of Classification Search
USPC oot 726/24, 25,1, 713/189
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,757,915 A * 5/1998 Aucsmith GOG6F 21/51
713/167

7,779,472 Bl 82010 Lou
8,756,693 B2 6/2014 Dube et al.

2005/0283429 Al* 12/2005 Bates GO06Q 20/40
705/38
(Continued)
OTHER PUBLICATIONS

Seo et al., Analysis on Maliciousness for Mobile Applications, 2012
Sixth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, pp. 126-129, 2012.

Primary Examiner — Joseph P Hirl
Assistant Examiner — Sayed Beheshti Shirazi
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Techniques for in-line filtering of insecure or unwanted
mobile components or communications (e.g., insecure or
unwanted behaviors associated with applications for mobile
devices (“apps”), updates for apps, communications to/from
apps, operating system components/updates for mobile
devices, etc.) for mobile devices are disclosed. In some
embodiments, in-line filtering of apps for mobile devices
includes intercepting a request for downloading an applica-
tion to a mobile device; and modifying a response to the
request for downloading the application to the mobile device.
In some embodiments, the response includes a notification
that the application cannot be downloaded due to an applica-
tion risk policy violation.

27 Claims, 16 Drawing Sheets

120

122 124

SMART PHONES TABLETS

OTHER MOBILE
DEVICES

|

ENTERPRISE APP STORE 118

126

@ b
116

| ~102 128
OLOUDEASED PP CACHE

104 106 108

110 11 14

DECOMPIL-
ATION

INSTRUMENT-

Dis-
ASSEMBLY ED EMULATION

MALWARE || BEHAVOR-

URL AND [P
BASED
DETECTION ANALYSIS

REPUTATION

US 9,178,852 B2

Page 2

(56)

2007/0258469 Al* 11/2007 Bennett

References Cited
U.S. PATENT DOCUMENTS

2007/0294273 Al* 12/2007 Bendeck

2007/0294373 Al* 12/2007 Harrison

2008/0134138 Al
2012/0072561 Al*

6/2008 Chamieh et al.

3/2012 Rebaczc.......

2012/0110674 Al*

2012/0246484 Al*

HO4L 63/145
370/400
GO6F 17/30032
HO4L 29/06
709/219

2013/0097660 Al*

2013/0212638 Al*

A63F 13/12
709/223

* cited by examiner

5/2012

9/2012

4/2013

82013

HO04W 4/001
726/25
GO6F 21/52
713/189
HO4L 63/10
726/1

HO4L 63/20
726/1

U.S. Patent Nov. 3, 2015 Sheet 1 of 16 US 9,178,852 B2

~120 122 124
| OTHER MOBILE ’
! SMART PHONES !
| TABLETS DEVICES :
| ENTERPRISE APP STORE 118 i
R A 126~ |
INTERNET 130
116~
102 |~ 128
CLOUD-BASED
PLATFORM APP CACHE
7104 7106 108 110 112 114
DIS- DECOMPIL- | | INSTRUMENT- URLAND IP MALWARE BEBi%\’ggR'
ASSEMBLY ATION ED EMULATION REPUTATION | | DETECTION || ,B8ED

FIG. 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 16 US 9,178,852 B2

CHECK APP CACHE 202
y

EXTRACT METADATA ASSOCIATED WITH THE APP 204
v

QUERY PUBLIC APP MARKET DATA FOR THE APP | 206
Y

PERFORM DISASSEMBLY/BYTE CODE PASS | 208
y

PERFORM DECOMPILATION L ~210
Y

PERFORM RUN-TIME EMULATION | ~212
Y

COMPARE WITH COLLECTIVE APP INTELLIGENCE 214
y

PERFORM RULE SET ANALYSIS 216
y

GENERATE APP RISK ASSESSMENT REPORT(S) 218

FIG. 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 16 US 9,178,852 B2

ENTERPRISE CUSTOMER 322
APP STORE

318 URL

302

312

304 308
T !!f" > -

i
|mimi
310 i RULES REPORTS

<

306

PLATFORM FOR QUANTIFYING
RISKS OF APPS
FOR MOBILE DEVICES

GLOBAL
APP
CACHE

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 16 US 9,178,852 B2
(B EASE | APPLEATONS - HOZLLAFREFOX
FIE BT VEW HSTRY BOOOLRIS TOUS HEP
| s lastcsmons [+]

(@[/5 [R cou TP S APERANCONNOEL Pt wrve| g #[@]
A
anerim
& ap
[soumrﬁsnnem WELCONE, M BL55R DN LG0T | L@
)
APPLCATONS e 0D ARLLATIN
AORLCATION 9| N & DESCRPTON [VERSION[TIE & |CATEGORRS & {LAST UPLOADED
UBERS 24 G s COMPAY
gsg]| LCATALOC O wax|gf 230607 | e AN
GROUFSEY DETALS | &0 | DELEe HIETRENE |
CATEGORES
i T ROV {conany
SETTINGS CATALOG ARODVE ,
& O s SHOAT GET kbl el
RERORTS DETALS | EDIT | DELETE
DEAS
AT . .
WY A0 O @ wrwws| 4077 DY L DL 74
0 DETALS | RATNGS | £0T | ELETE PRONEFTABLET e
. ANIRODSUAL HED \ .
= | BOROD: w0y [coeat |,
T P e 1T TN (O S S
— ANRODPHONE
MORODV: (comy |,
& O sswwn| AT 1 , o
DETALS | RATNGS | EDT | DELETE PRONE - [WoE
‘AUTOMAT‘ONANDRO‘DAPP“W‘ON O e MOUTNSORTL . (MIODUE [COBAY |
DETALS | RATNGS | EDT | DELETE DESCRTION ™ |PHONE [HDE .

FIG. 4

U.S. Patent Nov. 3, 2015 Sheet 5 of 16 US 9,178,852 B2

@ EASE| APPLICATIONS| VIEW ACTIONS - MOZLLA FREFOK B
BIE EDT VEW HSTORY BOOKMARKS [00LS HELP

| () exse appucatons! vewacrons | - | -
(=) APPERIN COM HTTP HOAEASE APPERIAN CONNDEX PPAPPLIATON2SSAPPDETALS 2 v][sz][@]

& appertan

502

)
SQUD TESTNG 1 WELCONE, CIIBUSER (ADMN | LOGOUT | KELP
\.
4 N\
APPLICATIONS > VIEW dh ADDAPPLICATION
APPLICATIONS 9 NS
SERS 3 @ 105:PHONE<TABLET
GROUPS 2 Wk e
CATEGORES (30 [Coemis | [RG] [INSPECTION |
SETTINGS
REPORTS INSPECTION REPORT
- STATUS: INSPECTION REPORT AVAILABLE
Y ACCONT REQUEST REPORT

TOTAL SCORE 87100

ALWARE BEHAVIORS: 10010

PRIVACY BEHAVIORS: 34100

RISKY SEAAVIORS: S1100

SUNIMARY:

® APPTHORITY ID: 307048

® FILETYPE: APPLEIOS

® APPLICATION NAME: ACTIONS

® APPLICATION PACKAGE: COM.APPERIANACTIONS

p |

FIG. 5

U.S. Patent Nov. 3, 2015 Sheet 6 of 16 US 9,178,852 B2

/!

© FILE MD5: 314B4516793879B21CB22AFBSAT18A15

© FILE SHA-1: 0D72075CB3ED2BAASOFBTBEDFFI69CH14BF2CB
 APPLICATION FILE SIZE: 682201

© APPLICATION VERSION: 1.0

 SUBMISSION RECEIVED: 2012-04-27 16:55.08 UTC

© ANALYSIS PROGRESS: 100% COMPLETE

© SCANNED WITH ENGINE VERSION: 220

© SCANNED WITHRULE SET VERSION: 160

RISKY BEHAVIORS:

© THS APPLICATION WASNT COMPILED AS A POSITION INDEPENDENT EXECUTABLE (PIE) WHICH CAN
EXPOSE THE APPLICATION TO MEMORY CORRUPTION ATTACKS.

 THIS APPLICATION WASNT FOUND ON THE CFFICIAL APPLE APP STORE. THE ORIGINS OF THIS
APPLICATION CANNCT BE VERIFIED.

PRIVACY BEHAVIORS:

© THS APPLICATION INCLUDES FILE PATHS TO SOURCE CODE FILES IN DEBUG INFORMATION STORED
WITHIN THE APPLICATION EXECUTABLE IMAGE. THESE PATHS OFTEN INCLUDE USERNAMES OR OTHER
INFORMATION RELATED TO THE DEVELOPER OF THE APPLICATION. THIS INFORMATION COULD BE
USED TO ASSIST IN TARGETING THE APPLICATION DEVELOPER OR DEVELOPMENT COMPANY.

® THS APPLICATION INCLUDES FILE PATHS TO SOURCE CODE FILES IN DEBUG INFORMATION STORED
WITHIN THE APPLICATION EXECUTABLE IMAGE. THESE PATHS OFTEN INCLUDE USERNAMES OR OTHER
INFORMATION RELATED TO THE DEVELOPER OF THE APPLICATION. THIS INFORMATION COULD BE
USED TO ASSIST IN TARGETING THE APPLICATION DEVELOPER OR DEVELOPMENT COMPANY.

HOSTNAME AND IP ADDRESSES:

E

HTTPS IAPPRAMP APPERIAN COMPUBLIC- NA

EASE-SOK INTERFACE PHP

IDAPLOCALHOST! NiA

HTTPS IV APPLE COMAPPLECAID NA

HTTPMWWW APPLE COMAPPLECAI N

[¥]

(APPERIANHOME PRIVACY POLICY JAE

FIG. 5 (Cont.)

U.S. Patent Nov. 3, 2015 Sheet 7 of 16 US 9,178,852 B2

RECEIVE AN APP FOR A MOBILE DEVICE 602

\ 4

PERFORM AN AUTOMATED ANALYSIS OF THE APP 604
BASED ON A RISK PROFILE

h 4

GENERATE A RISK SCORE BASED ON THE AUTOMATED | ~606
ANALYSIS OF THE APP BASED ON THE RISK PROFILE

FIG. 6

U.S. Patent Nov. 3, 2015 Sheet 8 of 16 US 9,178,852 B2

RECEIVE A SET OF APPS FOR AN ENTERPRISE APP |~ 702
STORE

Y

PERFORM AN APP RISK ASSESSMENT FOR EACH OF THE | ~704
APPS BASED ON AN ENTERPRISE RISK PROFILE

Y

DETERMINE AN APP RISK SCORE FOR EACH OF THE |~ 706
APPS BASED ON THE ENTERPRISE RISK PROFILE

Y

REPORT THE APP RISK SCORES FOR EACH OF THE APPS | ~708
BASED ON THE ENTERPRISE RISK PROFILE

FIG.7

U.S. Patent Nov. 3, 2015 Sheet 9 of 16 US 9,178,852 B2

UPLOAD APP TO APP ANALYSIS SYSTEM 802

4

ANALYZE THE APP USING THE APP ANALYSIS SYSTEM -804

Y

INTERCEPT A REQUEST FOR THE APP FROM A MOBILE | ~806
DEVICE

Y

DETERMINE A UNIQUE IDENTIFIER FOR THE APP |~~808

Y

SUBMIT THE UNIQUE IDENTIFIER FOR THE APP TO THE { ~810
APP ANALYSIS SYSTEM

Y

RECEIVE RESPONSE FROM THE APP ANALYSIS 812
SYSTEM

Y

PERFORM AN ACTION TO BLOCK OR ALLOW THE APP 814
TO BE DOWNLOADED BASED ON THE RESPONSE <
RECEIVED FROM THE APP ANALYSIS SYSTEM

FIG. 8

U.S. Patent Nov. 3, 2015 Sheet 10 of 16 US 9,178,852 B2

902

Y

DEVICE
(MOBILE,

DESKTOP,
OTHER)

y

916

904~

AP APP
DOWNLOAD PP APP
REQUEST

"\ 908 | ~906 920

946 Y
FILTERING
NETWORK
DEVICE (INTERNET,
(FIREWALL, OTHER)
ROUTER
OTHER) 922
A
936 924
P
944 926
vEs| / | ~934
APP NETWORK
(INTERNET,
OTHER)
938 | -928
940 932
— 930
NO APP APP APP
DOWNLOAD ANALYSIS ANALYSIS
/ REJECTED RESULTS SYSTEM
942

FIG.9

Sheet 11 of 16

NETWORK
(INTERNET,
OTHER)

U.S. Patent Nov. 3, 2015
1002
DEVICE
(MOBILE, |
DESKTOP, |
OTHER)
1004 1036
APP APP
DOWNLOAD DOWNLOAD
REQUEST REJECTED
1006~ 1008
A
FILTERING
DEVICE 1024
(FIREWALL,
ROUTER,
OTHER)
1010*\\
APP
1012 ANALYSIS
RESULTS | ~1018

NETWORK
(INTERNET
OTHER)

1014

APP
ANALYSIS
SYSTEM

| _-1016

FIG. 10

US 9,178,852 B2

1034

APP
STORE

U.S. Patent Nov. 3, 2015 Sheet 12 of 16 US 9,178,852 B2
1102
DEVICE
(MOBILE,
™ DESKTOP,
OTHER)
1104 1108 1116
1106 1110 1112 1114
FILTERING
MOBILE
APP =(FEEX5XiL A APP
SEARCH ROUTER. " (INTERNET, STORE
REQUEST OTHER)’ OTHER)
A A
| 1136
SEARCH
FILTERED / RESPONSE
RESPONSE N 1118
y 1132~ | 1122
1134
NETWORK 1124
(INTERNET,
ANALYSIS
RESULTS 1122
(- _~1128
1130 "| ANALYSIS
COMPONENT

FIG. 11

U.S. Patent Nov. 3, 2015 Sheet 13 of 16 US 9,178,852 B2
1202
MOBILE
DEVICE
1204 1224
BAD DATA BLOCK OR
TAKE
SMS, MOBILE
MALWARE OTHER
ACTION
C&C, ETC)
1206
~J 1208 1299 1228
I 1221
FILTERING NO
DEVICE
(FIREWALL, OK\YES » ALLOW
ROUTER, ? /
OTHER) 1226
1220
1210~ | 1218
1210
™ ANALYSIS
RESULTS
¥
1212
NETWORK
(INTERNET, 1216
OTHER)
ANALYSIS
COMPONENT
1214

FIG. 12

U.S. Patent

Nov. 3, 2015 Sheet 14 of 16 US 9,178,852 B2
1302
MOBILE
DEVICE
1304 1324
MOBILE BLOCK OR
DEVICE TAKE
APPLICATION OTHER
TRAFFIC ACTION
1306
1308 L~ 1322 1328
Y 1321
FILTERING NO
DEVICE
(FIREWALL, OK\YES » ALLOW
ROUTER, ? /
OTHER) 1326
1320
1310~
1310
™ POLICY | —1318
RESULTS
\
1312
NETWORK
(INTERNET, 1316
OTHER)
POLICY
COMPONENT
1314

FIG. 13

U.S. Patent Nov. 3, 2015 Sheet 15 of 16 US 9,178,852 B2

INTERCEPT A REQUEST

FOR DOWNLOADING 1402
AN APPTO A

MOBILE DEVICE

\ 4

MODIFY A RESPONSE

TO THE REQUEST FOR |~ 1404
DOWNLOADING THE

APP TO THE MOBILE DEVICE

FIG. 14

U.S. Patent

Nov. 3, 2015 Sheet 16 of 16

PERFORM IN-LINE
FILTERING OF TRAFFIC
FROM A MOBILE DEVICE
TO A NETWORK
(E.G., THE INTERNET)

1502

Y

IDENTIFY AN APP
REQUEST FROM THE
IN-LINE FILTERING
OF TRAFFIC FROM
THE MOBILE DEVICE

~1504

Y

MODIFY A RESPONSE
TO THE APP REQUEST

THAT IS COMMUNICATED
TO THE MOBILE DEVICE

1506

FIG. 15

US 9,178,852 B2

US 9,178,852 B2

1
IN-LINE FILTERING OF INSECURE OR
UNWANTED MOBILE DEVICE SOFTWARE
COMPONENTS OR COMMUNICATIONS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/740,061 entitled IN-LINE FIL-
TERING OF INSECURE OR UNWANTED MOBILE
DEVICE SOFTWARE COMPONENTS OR COMMUNI-
CATIONS filed Jan. 11, 2013, which claims priority to U.S.
Provisional Patent Application No. 61/664,109 entitled IN-
LINE FILTERING OF INSECURE OR UNWANTED
MOBILE DEVICE SOFTWARE COMPONENTS OR
COMMUNICATIONS filed Jun. 25, 2012 and U.S. Provi-
sional Patent Application No. 61/692,156 entitled IN-LINE
FILTERING OF INSECURE OR UNWANTED MOBILE
DEVICE SOFTWARE COMPONENTS OR COMMUNI-
CATIONS filed Aug. 22, 2012, all of which are incorporated
herein by reference for all purposes.

BACKGROUND OF THE INVENTION

An application, also referred to as an “app,” generally
refers to a software application that executes on a computing
device, such as a mobile device. For example, mobile devices
include smart phones, tablets, laptops, and/or other mobile
devices. Various application platforms exist for different
operating systems, such as Microsoft Windows® platforms,
Google Android® platforms, and Apple iOS® platforms.
Application markets exist for each of these application plat-
forms, which can make available thousands to millions of
different apps for such platforms.

For example, various apps are available for executing on
smart phones such as the HTC EVO® or Apple iPhone®,
tablets such as the Motorola Xoom® or Apple iPad®, embed-
ded devices executing the Google Android® operating sys-
tem such as those shipped by Mentor Graphics and their
partners, and computer operating systems such as Apple Mac
O8 X® and Microsoft Windows 8®.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a functional block diagram of an architecture for
quantifying the risks of applications (“apps™) for mobile
devices in accordance with some embodiments.

FIG. 2 is a flow diagram for quantifying the risks of apps
for mobile devices in accordance with some embodiments.

FIG. 3 is another functional block diagram of an architec-
ture for quantifying the risks of apps for mobile devices in
accordance with some embodiments.

FIG. 4 is a screen diagram of an apps view of a user
interface for a platform for quantifying risks of apps for
mobile devices in accordance with some embodiments.

FIG. 5 is a screen diagram of a detailed report for an app
analyzed by the platform for quantifying the risks of apps for
mobile devices in accordance with some embodiments.

FIG. 6 is a flow diagram for quantifying the risks of apps
for mobile devices in accordance with some embodiments.

FIG. 7 is another flow diagram for quantifying the risks of
apps for mobile devices in accordance with some embodi-
ments.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 8 illustrates a flow diagram for in-line filtering of apps
for mobile devices in accordance with some embodiments.

FIG. 9 illustrates a functional block diagram of an archi-
tecture for in-line filtering of apps for mobile devices after
receiving downloaded apps in accordance with some embodi-
ments.

FIG. 10 illustrates a functional block diagram of an archi-
tecture for in-line filtering of apps for mobile devices before
downloading requested apps in accordance with some
embodiments.

FIG. 11 illustrates a functional block diagram of an archi-
tecture for in-line filtering of app market search results for
mobile devices in accordance with some embodiments.

FIG. 12 illustrates a functional block diagram of an archi-
tecture for in-line filtering of insecure or unwanted mobile
device communications in accordance with some embodi-
ments.

FIG. 13 illustrates a functional block diagram for in-line
filtering of app data communications for mobile devices
based on a policy in accordance with some embodiments.

FIG. 14 illustrates a flow diagram for in-line filtering of
apps for mobile devices in accordance with some embodi-
ments.

FIG. 15 illustrates another flow diagram for in-line filtering
of'apps for mobile devices in accordance with some embodi-
ments.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

An application, also referred to as an “app,” generally
refers to a software application that executes on a computing
device, such as a mobile device (e.g., a mobile device refers to
a computing device that includes a processor for executing a

US 9,178,852 B2

3

software application). For example, mobile devices include
smart phones, tablets, laptops, and/or other mobile devices.
Various application platforms exist for different operating
systems, such as Microsoft Windows® platforms, Google
Android® platforms, and Apple iOS® platforms. Application
markets (e.g., app stores) exist for each of these application
platforms, which can make available thousands to millions of
different apps for such platforms.

For example, various apps are available for executing on
smart phones such as the HTC EVO® or Apple iPhone®,
tablets such as the Motorola Xoom® or Apple iPad®, embed-
ded devices executing the Google Android® operating sys-
tem such as those shipped by Mentor Graphics and their
partners, and computer operating systems such as Apple Mac
O8 X® and Microsoft Windows 8®.

Also, as these operating system platforms for mobile
devices converge with legacy computer desktop and laptop
operating system platforms (e.g., Microsoft Windows® 8 and
Apple Mac OS X®), similar app markets and availability of
common apps across such platforms are becoming increas-
ingly common.

With hundreds of thousands to millions of different apps
for such platforms available to consumers, enterprises (e.g.,
various entities, including corporate entities, government
entities, and other entities) are confronted with supporting
and/or managing these various devices that can have a variety
of'such apps on users’ devices. Enterprise challenges include
the increasing usage by, for example, employees of their own
devices that can have access to corporate resources (e.g.,
employee smart phones, tablets, etc.). The ever growing num-
ber and variety of apps also poses a significant challenge for
entities to manage and monitor the downloading, installation,
and usage of such apps by users on devices that can have
access 10 corporate resources.

However, the trend towards using these apps for enterprise
uses and/or on devices that may have enterprise access also
presents new and complex challenges for enterprises (e.g.,
Information Technology (IT) at enterprises and/or manage-
ment for such enterprise’s information and technology) and
for consumers to understand risks posed by such apps. In
particular, these apps can present various risks to the enter-
prise and/or users.

For example, apps can have access to enterprise resources,
such as a corporate address book, corporate intellectual prop-
erty, corporate Wi-Finetwork(s), VPN access, and/or various
other enterprise resources. Because apps can have access to
corporate resources, it is desirable for the enterprise to under-
stand and quantify the risks associated with apps that have
been downloaded or can be downloaded to devices used by,
for example, employees of the entity or other users who have
access to any enterprise resources (e.g., on the mobile device
and/or on the enterprise network).

Mobile devices present unique challenges as a majority or
significant amount of the mobile malware and risky behaviors
are delivered through apps (e.g., payloads with apps). In
particular, app markets expose the undesirable trends of
increasing malware present in various apps or vulnerabilities
of such apps that can be exploited by malware or sophisti-
cated attacks (e.g., intrusions, etc.), privacy risks (e.g., spy-
ware or other malware), resource usage (e.g., CPU, memory,
storage, battery, network, and/or other physical device
resources), and/or other intellectual property related risks
(e.g., data loss, intellectual property theft, etc.) exposed by
such apps and/or vulnerabilities present in such apps. As the
app market evolves and sophistication of the security risks
increase, the approach of only using blacklists is generally

10

15

20

25

30

35

40

45

50

55

60

65

4

insufficient to address these evolving security related chal-
lenges of apps for mobile devices.

Enterprises (e.g., companies, governmental organizations,
and/or other entities) generally support employees and other
users (e.g., contractors, guests, and/or other users associated
with the enterprise) who use various types of mobile devices
atwork, such as smart phones, tablets, laptops, and/or various
other types of mobile devices. However, provisioning anti-
malware and/or enforcing enterprise customized anti-mal-
ware policies by provisioning anti-malware on each such
device can be a cumbersome and often futile task as employ-
ees may bring their own devices to work (BYOD) and/or
frequently replace or upgrade such devices.

However, with more and more mobile apps showing up on
mobile devices such as smart phones, tablets, laptops, and/or
embedded devices, enterprises and users want to be ensured
that the apps installed on their mobile devices do not include
malware. Many if not most malware for mobile devices are
delivered using apps as payloads for getting such malware
installed/executed on the mobile device.

In addition, on many mobile devices, particularly smart
phones, tablets, and embedded devices, the devices them-
selves can be resource constrained (e.g., limited CPU capa-
bilities, limited memory capabilities, limited storage, and/or
strong dependency on the battery). These resource limitations
can put tight constraints on resource-intensive operations,
such as malware detection systems. For example, many mal-
ware detection systems rely upon emulation or dynamic
analysis (e.g., running the software within the context of an
instrumented emulator), which can be a very resource inten-
sive operation. As a result, this operation, because of both
hardware resource constraints and software sandboxing com-
mon on mobile devices, makes traditional dynamic analysis
“on-device” impractical and/or undesirable. To further limit
“on-device” malware detection, permission models imple-
mented on the mobile device can restrict a level of access to
successfully analyze arbitrary apps for malware behaviors.
However, there is still a need to detect new and unknown
malware, in an ever growing number and diversity of apps
available for mobile devices (e.g., through public and/or pri-
vate/enterprise app stores).

In addition, mobile devices and the operating systems for
mobile devices are susceptible to unique security, privacy,
and other issues of concern. Applications (“apps”) that are
malicious in nature or that perform undesirable operations
can be downloaded and installed onto mobile devices over the
network (e.g., the Internet). Apps may also transmit data over
the network that should not be transmitted, such as location
information (e.g., GPS coordinates), address book informa-
tion, and/or other information. Also, this data may be trans-
mitted not only via the traditional IP networks but also via
cellular networks.

Also, there are no existing solutions for using a device-
based solution to generate an app inventory on certain types of
mobile devices. For example, there are no existing solutions
for using a device-based solution to generate an app inventory
onApple iOS®-based devices, because the Apple iOS® sand-
box on the device does not permit an app inventory (e.g.,
listing of apps installed on the device) to be generated (e.g.,
any apps in the Apple app store must comply with the Apple
i0S® sandbox rules, which do not permit generating such an
app inventory). As a result, there are no existing device-based
anti-malware solutions that perform anti-malware app scan-
ning available for iOS®-based devices.

Traditional anti-malware solutions operate “on-device,”
meaning the file or application being checked for malware is
checked for malware on the same device that the application

US 9,178,852 B2

5

is expected to run on. More specifically, traditional anti-
malware solutions leverage on-device or on-system static
analysis to decide if a file, executable, or application is mal-
ware or not. What are needed are techniques for performing
anti-malware analysis for apps installed on mobile devices
using out-of-band or “off-device” techniques.

Thus, techniques for oft-device anti-malware solutions for
mobile devices are needed. Accordingly, various techniques
for in-line filtering of insecure or unwanted mobile compo-
nents or communications (e.g., insecure or unwanted behav-
iors associated with applications for mobile devices (“apps™),
updated versions of apps, communications to/from apps,
operating system components/updates for mobile devices,
etc.) for mobile devices are disclosed. For example, using
various techniques described herein, an anti-malware policy
(e.g., an anti-malware policy can be customized for particular
entities or categories of entities, such as banks or health care
entities, etc.) can specify undesirable behaviors and/or other
attributes that can be used to identify insecure or unwanted
mobile components or communications.

Larger communications networks are generally built as an
aggregate of smaller networks. These smaller networks are
generally joined to larger networks by routers, and routers or
devices placed before or after them generally contain support
for analysis and optional blocking (e.g., filtering) of insecure
or unwanted data. Mobile devices such as mobile phones or
tablets connect to these networks and use these networks to
send and receive data such as software components including
operating system updates or third-party applications (e.g.,
apps and/or app updates), or to communicate with other
devices. Thus, using the various techniques disclosed herein,
the filtering of data previously described is extended to filter
insecure or unwanted data communications generated as a
result of mobile device interactions on the network.

For example, organizations such as enterprises or cellular
network carriers generally require the capability to identify
and optionally block insecure or unwanted data generated as
a result of mobile device interaction on the network. In some
embodiments, a cloud-based app risk analysis technique can
be integrated with network devices (e.g., in-line filtering
devices, such as security appliances, routers, and gateways) to
facilitate identifying such insecure or undesired data commu-
nications (e.g., apps/app updates, OS updates/components, or
communications to/therefrom, that violate a policy related to
mobile devices) for blocking or performing other responsive
actions, and to thereby provide such organizations with effec-
tive and efficient mechanisms to manage and secure against
the evolving and increasing mobile device-related threats
and/or vulnerabilities.

In some embodiments, in-line filtering of applications
(“apps”) for mobile devices is provided. In some embodi-
ments, in-line filtering of applications for mobile devices
includes intercepting a request for downloading an applica-
tion to a mobile device and modifying a response to the
request for downloading the application to the mobile device.
In some embodiments, the response includes a notification
that the application cannot be downloaded due to an applica-
tion risk policy violation. In some embodiments, in-line fil-
tering of apps for mobile devices further includes filtering
traffic in-line from the mobile device to a network (e.g., the
Internet); determining that the filtered traffic from the mobile
device includes the request for downloading the application
to the mobile device; and determining the response to the
application request based on an application risk policy, in
which the application risk policy is configured for an enter-
prise, and in which the mobile device is associated with the
enterprise. In some embodiments, in-line filtering of apps for

10

15

20

25

30

35

40

45

50

55

60

65

6

mobile devices further includes determining the response
based on an application risk assessment for the application, in
which the application risk assessment is based at least in part
on a behavior associated with the application. In some
embodiments, in-line filtering of apps for mobile devices
further includes determining the application associated with
the request violates a policy (e.g., an application risk policy)
based on an application analysis (e.g., an automated risk
assessment) of the application.

In some embodiments, in-line filtering of applications
(“apps”™) for mobile devices is provided. In some embodi-
ments, in-line filtering of applications for mobile devices
includes performing in-line filtering of traffic from a mobile
device to a network (e.g., the Internet); identitying an appli-
cation request from the in-line filtering of traffic from the
mobile device to the network, in which the application request
includes a request to download an application to the mobile
device; and modifying a response to the application request
that is communicated to the mobile device. In some embodi-
ments, the modified response includes a notification that the
application cannot be downloaded due to an application risk
policy violation. In some embodiments, in-line filtering of
apps for mobile devices further includes determining the
response to the application request based on an application
risk policy. In some embodiments, in-line filtering of apps for
mobile devices further includes determining the response to
the application request based on an application risk policy, in
which the policy includes an application risk profile based on
behavior associated with the application. In some embodi-
ments, in-line filtering of apps for mobile devices further
includes intercepting application requests from a plurality of
mobile devices.

In some embodiments, in-line filtering of insecure or
unwanted mobile device communications for mobile devices
is provided. In some embodiments, in-line filtering of inse-
cure or unwanted mobile device communications for mobile
devices includes intercepting an application search request
from a client device to a public application market; and modi-
fying a response to the application search request to filter
applications listed in the response based on an application
risk policy. In some embodiments, the modified response
includes a notification that one or more applications respon-
sive to the application search request were removed from the
response due to the application risk policy violation.

In some embodiments, in-line filtering of insecure or
unwanted mobile device communications for mobile devices
is provided. In some embodiments, in-line filtering of inse-
cure or unwanted mobile device communications for mobile
devices includes intercepting a communication from a mobile
device at an in-line filtering device and determining whether
the communication from the mobile device includes an inse-
cure or unwanted mobile device communication. In some
embodiments, the determination that the communication
from the mobile device includes an insecure or unwanted
mobile device communication is based on a traffic policy for
mobile device communications. In some embodiments, in-
line filtering of insecure or unwanted mobile device commu-
nications for mobile devices further includes blocking the
communication from the mobile device ifitis determined that
the communication from the mobile device is an insecure or
unwanted mobile device communication based on a traffic
policy for mobile device communications.

FIG. 1 is a functional block diagram of an architecture for
quantifying the risks of applications (“apps”) for mobile
devices in accordance with some embodiments. As shown, a
platform 116 is provided for quantitying the risks of apps for
mobile devices that is in communication with an enterprise

US 9,178,852 B2

7

network 126 via the Internet 130. The enterprise network 126
includes an enterprise app store 118 (e.g., an enterprise that
has its own internal app store for providing apps for mobile
devices used by its users, such as its employees, contractors,
etc.) that provides apps for enterprise mobile devices, includ-
ing smart phones 120, tablets 122, and/or other mobile
devices 124 (e.g., laptops, etc.). For example, using the vari-
ous techniques described herein, the platform 116 canbe used
to automatically assess the risks of apps being distributed by
the enterprise app store 118 (e.g., based on a policy, such as an
enterprise risk policy/profile). Accordingly, the platform 116
screens all apps that are available in the enterprise app store
118.

In some embodiments, the platform 116 implements a
holistic approach to screening apps, and can automatically
analyze apps for mobile devices to determine various prop-
erties, such as one or more of the following: market reputation
of'the app; presence of malware; insecure programming prac-
tices; malicious changes to existing apps; data exfiltration;
corporate intellectual property (IP) impacts; cryptographic
weakness or implementation faults; security risks; privacy
concerns (e.g., location tracking, extracting contact book,
sharing browsing history, etc.); energy usage (e.g., CPU
cycles measured and compared with apps in similar catego-
ries or other versions of the same app, such as Facebook app
version X v. version Y); and network usage. For example,
these techniques performed by the platform 116 can be imple-
mented as a fully automated solution for quantifying the risks
of apps for mobile devices that can increase the detection of
known malware, screen for new and/or unknown malware,
identify risks in operating systems (e.g., including the Google
Android® operating system and the Apple iOS® operating
system), and can integrate with a mobile device management
(MDM), app store, and integrated development environment
(IDE) solutions.

In some embodiments, the platform 116 implements the
holistic approach to screening apps using a phased implemen-
tation to risk assessment of apps for mobile devices. As
shown, the platform 116 includes a cloud-based platform 102.
For example, the cloud-based platform 102 can provide a
global app cache (e.g., the platform 116 can service a plurality
of enterprise app stores), including an app cache 128 for
caching results for previously analyzed apps as shown in FIG.
1. The cloud-based platform 102 is in communication with a
series of data collection engines, including: a disassembly
engine 104, a decompilation engine 106, an instrumented
emulation engine 108, a URL and IP reputation engine 110, a
malware detection engine 112, and a behavior-based analysis
engine 114. For example, the platform can include various
engines, such as shown, for performing various functions and
collecting various data based on the functions, which can be
used for later app risk assessment and analysis as well as
shared with one or more of the various other engines, such as
described herein with respect to various embodiments.

In some embodiments, the platform 116 for quantifying the
risk of apps has the following characteristics: varying a num-
ber of phases of data collection and analysis, depending upon
the platform and type of app; a series of phases of analysis that
run, for purposes of collecting data, followed by a collection
ofrules that then process the collected data; rules that identify
behaviors, characteristics, or properties, which present risks
to the enterprise or consumer; and a report generation phase,
in which the relevant findings/results from the rules execution
phase are reported to end users (e.g., the enterprise and con-
sumers).

FIG. 2 is a flow diagram for quantifying the risks of apps
for mobile devices in accordance with some embodiments. In

20

25

35

40

45

65

8

some embodiments, a platform for quantifying the risks of
apps for mobile devices implements a phased approach to risk
assessment of apps for mobile devices. In some embodi-
ments, the phased approach includes one or more of the
phases as shown in FIG. 2 and discussed in detail below. In
some embodiments, the platform for quantifying the risks of
apps for mobile devices uses a series of data collection
engines for implementing the phased approach, such as
shown in FIG. 1.

In some embodiments, an app query to the platform for
quantifying the risks of apps for mobile devices initiates the
process. For example, an enterprise app store (e.g., enterprise
app store 118 as shown in FIG. 1, which can be implemented
using a commercially available MDM solution) can commu-
nicate with a cloud service/web platform for quantifying the
risks of apps for mobile devices (e.g., platform 116 as shown
in FIG. 1) using a web service (e.g., RESTful web API or
REST API) to communicate an app (e.g., one or more apps for
the enterprise app store) that is to be automatically analyzed
for a risk assessment by the cloud service/platform. In some
embodiments, the Rest API supports auth tokens for provid-
ing authorization and authentication of such app queries to
provide a secure communication mechanism. At 202, in
response to the app query, a pre-screen analysis phase is
performed that includes checking an app cache (e.g., a cache
that includes information for apps that were previously ana-
lyzed by the platform). In some embodiments, if the platform
has already analyzed that app (e.g., that particular version of
the app), then the previously determined risk score (e.g., app
reputation score and possible additional data) is returned
(e.g., at near wire speed). This approach highlights the value
of pre-screening apps (e.g., several hundreds of thousands of
apps can have already been pre-screened by the platform
using these techniques).

In some embodiments, after uploading an application (e.g.,
an App container) using the Rest API, an application ID
number is returned. For example, the application ID number
can be used as a key to view the results or to perform more
advanced analysis. In some embodiments, various fields are
used including the following: an application data field is used
to identify the app file; and an origin field is used to set the
source (e.g., origin) of an app. For example, the origin field
can be set to “public” or “private” depending on where the
application came from, with “public” indicating that the app
is from a public source (e.g., a public app store) and “private”
indicating that the app is primarily used internally and not
meant for general consumption. Among other restrictions,
apps marked as private can be hidden from global app cache
queries.

In some embodiments, the returned app ID can be used for
subsequent queries based on the app ID, such as for reports
based on one or more provided App IDs (e.g., individual app
query—reporting on an individual app based on a request to
find a specified app in the global cache, bulk app query—
reporting on a plurality of apps based on a bulk request to find
apps in the global cache, updated reports, and/or more
advanced reports). In some embodiments, polling is sup-
ported to determine when the platform has completed the
analysis of an app (e.g., based on a specified app ID) and that
a report is ready based on the completed analysis by the
platform. In some embodiments, querying (e.g., using the
Rest API) the platform to find applications that have already
been analyzed by the platform and are stored in the global app
cache (e.g., app cache 128 as shown in FIG. 1) are supported
(e.g., comparing an app file hash to hash stored in the global
app cache, querying by the app name, and/or using various
other techniques), as described in further detail below.

US 9,178,852 B2

9

In some embodiments, such app queries will have already
been analyzed by the platform and, thus, will trigger a near
wire speed response to such app queries. In particular, in
many cases the app will already be part of the app cache (e.g.,
app cache 128 as shown in FIG. 1) and already analyzed. In
some embodiments, to check if the app is already in the app
cache, all thatis needed is a hash ofthe application (e.g., using
a hashing algorithm, such as MDS5, SHA-1, SHA-256, or
another hashing algorithm) to query the app cache for a
match.

In some embodiments, an app query specifies one or more
of'the following: a unique ID for the transaction, a match type
(e.g., allto return all app matches, latest to return a newest app
match), platform (e.g., Google Android platform, Apple iOS
platform, Microsoft Windows platform, etc.), app name, app
version, package name (e.g., package name for Android apps,
bundle identifier for i0S apps), source of the app (e.g., enter-
prise or device), app size (e.g., Android APK file size, i0S
bundle size), app size memory (e.g., 10S dynamic size), app
hash (e.g., such as MD5, SHA-1, SHA-256, or another hash-
ing algorithm), app signature (e.g., a signature for Android
apps), item 1D (e.g., 10S 9-digit number specific to iOS apps,
Android Market asset ID for Android apps), and local (e.g.,
specifying the language of the report data).

Below is an example query to the platform from an app
catalog (e.g., an app store, such as an enterprise app store).

API Name: query_app

API Description: queries one individual app, returns one result;

does not require a sequence number; similar format to bulk_query_app;
can produce findings based on incomplete metadata

Type of HTTP call: POST

Parameters: [0 required, 13 optional]

- sequence_num (optional) (a unique ID for the transaction)

- platform (optional) {Android, iOS, Windows, etc. }

- app_name (optional) (Name of the app)

- app_version (optional) (Version of the app)

- package (optional) (Package name for Android apps; Bundle Identifier
for iOS apps [may be referred to as URL/URIs])

- app_location_source (optional) { enterprise, device }

- app_size_disk (optional) (Android APK file size; iOS Bundle Size)
- app_size_memory (optional) (C Dynamic Size)

- app_hash_md5 (optional) (MD35 of the APK/XAP file itself; on iOS,
MD35 of the app executable, which is contained

within the IPA [ZIP] archive)

- app_hash_shal (optional) (SHA-1 of the APK/XAP file itself;

on i0S, SHA-1 of the app executable, which is contained

within the IPA [ZIP] archive)

- app_hash_sha256 (optional) (SHA256 of the APK/XAP file itself;
on i0S, SHA256 of the app executable, which is contained within
the IPA [ZIP] archive)

- app_signature (optional) (Specific to Android, looks like:
ZdKozWeudHKt2VwVCFpH7dMi2hE)

- item_id (optional) (9-digit # that is specific to iOS apps;

on Android Market asset id)

The above example is an example of querying one indi-
vidual app. As further described herein with respect to various
embodiments, the platform also supports “bulk queries”
whereby, for example, a customer (e.g., an app store/app
catalog, the MDM server, the MAM app catalog, etc.) can
submit to the app risk assessment platform the metadata on a
plurality of apps (e.g., hundreds to thousands of apps at a
time), and the platform replies with the results for each of the
analyzed apps.

In some embodiments, a customer of the service for quan-
tifying the risks of apps for mobile devices can query the
platform as described herein. In some embodiments, each
customer can create users for the organization, which may
have varying permissions. For example, the corporate I'T team
of ACME Corporation can have one or more users that have

5

10

15

20

25

30

35

40

45

50

55

60

65

10

accounts with access to the platform. The corporate IT team
can also configure their account to have specific IT require-
ments for apps scanned on behalf of ACME Corporation (e.g.,
custom scanning, and/or custom reporting requirements,
such as based on security requirements, privacy require-
ments, and/or various other criteria as described herein). The
corporate IT team can also create scripts that automatically
query the platform for reports on apps being considered for
adding to the enterprise app store, including existing apps
(e.g., previously scanned apps), updated versions of existing
apps, and/or new apps. Using these techniques, the corporate
IT team can effectively manage the enterprise app store to
ensure that the apps available in the enterprise app store
satisfy their corporate I'T requirements (e.g., security, privacy,
device integrity, network integrity, etc.).

In particular, if the app already exists in the app cache (i.e.,
there is a match to the query of the app cache), then the
pre-existing app ID will be returned. Otherwise, that is, if the
app cache check does not result in a match or hit, then pro-
cessing continues to stage 204, which is discussed below.

In some embodiments, a phased analysis is performed by
the platform for quantifying the risks of apps for mobile
devices, in which data is collected at each phase or stage of
analysis by the platform for a given app being analyzed for a
risk assessment. At 204, metadata associated with the app is
extracted. In particular, metadata associated with the app can
include information that is important for assessing the overall
risk(s) associated with the app. For example, this phase can
include parsing an XML file associated with the app that hosts
general app information. Metadata associated with the app
that can be analyzed includes app permissions, intents, ser-
vices, and receivers. In particular, this phase can include
mapping out app permissions, file and version name, app
author, app 1D, package name, and/or various other attributes
and/or metadata associated with the app. In some embodi-
ments, this stage further includes inspecting app components
including accepting a component of an app, such as a meta-
data file or an executable image, absent in the remainder of the
app, to analyze and generate any potential findings based on
the parsed and analyzed metadata associated with the com-
ponent of the app. As discussed further below with respect to
stage 206, metadata associated with finding the app on the
public and/or private app markets includes artist and pub-
lisher information, item IDs, genre IDs or categories, price for
purchasing the app, release date of the app (e.g., app version),
software version external identifiers, and vendor ID.

At 206, a query of public app market data for the app is
performed. In particular, querying the public market(s) for
data on the app can facilitate significant information about an
app’s risk based on an analysis of the public market data
identified as associated with the app (e.g., using app descrip-
tions, app rankings in the store, vendor reputations, and/or
various other types of information). For example, various app
attributes and/or metadata can be compared with such data for
apps in public app markets. In particular, public app markets
are generally available to consumers, such as Apple’s App
Store, Amazon’s and Google’s Android App Market,
Microsoft’s App Store, and other public app stores, unlike
enterprise app markets which are generally only available to
permitted enterprise users, such as enterprise employees and
contractors. In some embodiments, the query of public app
market data includes the following types of data (e.g., to
facilitate analyzing whether such enterprise apps being ana-
lyzed have been repackaged with malware, such as a different
version of an Angry Birds® app that has been re-packaged
with malware): app size, content, version, and/or various
other types of data. In some embodiments, analytics are per-

US 9,178,852 B2

11

formed on the app download count, user ratings, and devel-
oper reputation data. For example, for Android-based apps,
each app’s manifest can be deobfuscated (e.g., using Android
APIs) and parsed to extract information of interest and for
further analysis, as described above.

There are various examples in which this phase for query-
ing of public app market data for the app can assist in deter-
mining an overall risk assessment for the app. As an example,
a source of the app (e.g., which app market or app markets it’s
available from) can have an impact on an overall app risk,
because some app markets are known to be riskier than other
app markets. As another example, a new app with fewer
downloads can have a higher risk than an older app with a
larger number of downloads. As another example, an app
developer’s reputation can also have an impact on an overall
app risk assessment. As another example, an average user
rating can also have an impact on overall app risk assessment.

As another example, an app’s file name, version, and app
size can be compared between the publicly available app and
the app submitted by the enterprise. If these fields vary, then
these results indicate that the app may have been repackaged,
which can also have an impact on overall app risk assessment
(e.g., as such can indicate that the app could have been
repackaged with a higher app risk). As another example,
given that apps are typically signed by a developer with a
private key and include information on who created the key, if
an app is signed and includes different information than the
publicly available app, this determination can also have an
impact on overall app risk assessment (e.g., as such, can also
indicate that the app could have been repackaged with a
higher app risk).

In some embodiments, an app is uniquely identified using
various techniques. For example, a hash of the app file (e.g.,
for Android app files, this can be a hash of the container; for
i0S app files, this can be a hash of a .ipa file, which is an
iPhone application archive file that stores an iPhone app,
which is usually encrypted with Apple’s FairPlay DRM tech-
nology), a hash of the executable, and/or a bundle ID can be
used to uniquely identify each app. As an example, this infor-
mation can be used to compare an app received in a query to
the platform to compare it with previously analyzed apps to
determine if there is a match with the previously analyzed
apps.

In some embodiments, the platform attempts to correlate
apps for the Apple iOS® operating system that are received
(e.g., from app queries, for apps that are in enterprise app
stores and/or are uploaded by users/customers) with apps that
have been pre-collected by the platform and that have already
been uploaded and analyzed by the platform. As discussed
above, 10S-based apps generally include an executable pro-
gram. In some embodiments, the platform decrypts any such
executables included in an i0S-based app prior to uploading
them. For example, if a user submits an app from the App
Store that includes an encrypted executable, it would not
normally match a previously uploaded app, as that app’s
executable would have been decrypted and, thus, would not
be the same. In some embodiments, to solve this problem, the
platform performs a series of comparisons, including the
following: hashing the pre-collected app (e.g., the app con-
tainer, including all contents), and comparing this to a hash of
the newly uploaded app. If this hash matches, no further work
is required. If a match is not made, then the executables for
both the new and pre-existing apps are compared. For
example, to make comparison of executables more likely to
succeed, the platform can save the hash for both the encrypted
as well as the unencrypted executable for every pre-collected
app, and can then compare a hash ofthe newly uploaded app’s

20

40

45

12

executable to both of these values. If there is a match, then no
further work is required. Otherwise, metadata from both apps
including the app’s “bundle identifier” and version can be
compared, and if a match is made, no further work is required.
Accordingly, using these three different matching techniques,
it is possible to reliably match newly uploaded apps to apps
previously uploaded to the platform, whether their
executables re-encrypted or not.

In some embodiments, handling of DRM-related mecha-
nisms, such as executable image encryption, is also provided
using various techniques. In particular, if an app that is
received by the platform is encrypted using DRM technology
(e.g., apps for the i0S platform can be encrypted using DRM
technology), then various approaches can be used to facilitate
processing the app using the various phases and collection/
analysis engines described herein with respect to various
embodiments. In some embodiments, the platform can handle
the encryption of apps in one of a variety of ways. An example
technique that the platform can perform is to correlate the
encrypted app with an unencrypted version of the app to
match the app with such an unencrypted version of the app,
such as based on the digital signature (e.g., a hash, such as
using MD5, SHA-1, SHA-256, or another hashing algorithm)
of the encrypted executable image of the app. As another
technique, the platform can also decrypt the encrypted app on
native hardware (e.g., leverage one or more iOS devices that
have previously been jail broken to decrypt the apps natively
at run-time). As yet another technique, the platform can
decrypt the encrypted app using pure software decryption
leveraging private keys from the operating system or native
hardware.

At 208, a disassembly/byte code pass of the app is per-
formed to provide a static analysis phase (e.g., as apps are
typically provided by the enterprise app stores/public app
stores only in executable formats). In some embodiments, a
disassembly/byte code pass phase is performed using a dis-
assembler, such as a disassembly engine (e.g., disassembly
engine 104 as shown in FIG. 1). In some embodiments, a
disassembly/byte code pass phase includes inspecting byte
code or assembly language (e.g., if applicable) to determine
what the app is supposed to do—how it is coded to perform.
For example, native instructions and virtual machine (VM)
byte codes can be processed and analyzed. In some embodi-
ments, this phase includes extracting a control flow graph,
method and function names, strings, data flow within the
app’s executable, and/or other information to facilitate a
static analysis and/or to facilitate providing a source code
conversion for the app, as discussed below in detail with
respect to stage 210. For example, app methods, such as
encryption methods, can be analyzed for risky behaviors
(e.g., using hard-coded passwords to protect private data or
calling methods with risky encryption algorithms). As
another example, the static analysis phase can include deter-
mining whether certain behaviors are implemented by the app
(e.g., performing an operation without user permission, such
as sending text/SMS messages without a user’s permission,
using GPS/location services without a user’s permission,
and/or various other behaviors of potential interest, such as
those described herein with respect to various embodiments).
As yet another example, native instructions and VM byte
codes can be processed and analyzed, and such can also be
used to facilitate a source code conversion (e.g., decompila-
tion phase) as further discussed below in detail with respect to
stage 210.

At 210, a decompilation phase is performed to facilitate
generating a source code version of the app (e.g., apps are
typically provided by the enterprise app stores/public app

US 9,178,852 B2

13

stores only in executable formats). In some embodiments, a
decompilation phase is performed using a decompilation
engine (e.g., decompilation engine 106 as shown in FIG. 1).
In some embodiments, the decompilation phase includes ana-
lyzing a software code path and mapping an app action tree.
For example, this information can be used to facilitate
dynamic analysis using such behavior code path information
determined from the source code analysis. For example, this
information can be used to compare actual behaviors to per-
mission and intent requests. As another example, the dynamic
analysis phase can include simulated behavior to monitor the
app’s behavior for determining whether certain behaviors are
performed by the app (e.g., performing an operation without
user permission, such as sending text/SMS messages by
monitoring/intercepting attempts to send SMS messages,
such as by hooking SMS calls in an Android framework for
Android-based apps, and/or various other behaviors of poten-
tial interest, such as those described herein with respect to
various embodiments). As yet another example, app analysis
can also include performing decompilation (e.g., in the case
of Android, java files) to identify risky behaviors, such as
risky usage of private data and app usage of known risky
method calls. In addition, such information can also be used
by researchers to easily read and create new rules when an app
is flagged as potentially risky.

In some embodiments, a web-based crawling engine for
web apps is provided. In some embodiments, this technique
includes running through a web-based code coverage tree and
testing out available behaviors from the web app. Data is
collected during the process so that behavioral rules can be
applied to the data findings. Initially, the process enumerates
through the web application (crawling), in the form of a
discovery phase, to spider the web application looking for as
many possible code paths in the tree as possible. Then the
dynamic analysis is leveraged and fuzzing occurs (e.g., using
a series of engines and rule sets) to find vulnerabilities, risk
behaviors, and privacy concerns in the web application.

At 212, a run-time emulation is performed to provide a
dynamic analysis phase (e.g., performing dynamic analysis
using instrumented emulation). In some embodiments, a run-
time emulation phase is performed using an instrumented
emulation engine (e.g., instrumented emulation engine 108 as
shown in FIG. 1). In some embodiments, the run-time emu-
lation phase includes executing the app on one or more emu-
lators (e.g., virtual machines or emulators, such as a platform
version of Android provided using such emulators that simu-
late an Android app execution environment, in which apps
executed in such an environment cannot detect that they are
executing in an Android emulation environment as opposed
to executing on an actual user’s Android mobile device). For
example, the dynamic analysis phase can monitor and ana-
lyze internal and external app API calls, including kernel level
API calls. The dynamic analysis phase facilitates performing
a deeper dive into risky behaviors that otherwise can be hid-
den from a static analysis (e.g., such as new components
being downloaded during run-time/execution of the app and/
or other suspicious and/or potentially malicious behaviors).

In some embodiments, a dynamic analysis (e.g., instru-
mented emulation) includes hosting a series (e.g., farm) of
emulators, in which instrumenting as part of our analysis is
provided. On some platforms, these are forked versions of
open source operating systems, in which API hooks into the
kernel, virtual machine, system calls, etc. are provided to
monitor the apps executed in the emulated environment. On
some platforms, a custom kernel and re-implemented stan-
dard libraries are used to allow the closed-source operating
system apps to monitor the apps executed in the emulated

25

30

40

45

55

14

environment. On some platforms, hooking and performing
binary patching on “simulators” to monitor the apps are
executed in the emulated environment. Once the app is
executing in the emulated environment, the dynamic analysis
phase collects data on API calls that occur (e.g., and the values
returned from those APIs), so that a rule set can be applied to
that data set. For example, correlating API calls to permis-
sions can be determined using various static and dynamic
techniques described herein to determine whether the app
exhibits any behaviors that exceed or are outside the scope of
authorizations—proper user permissions. In some embodi-
ments, the apps are instrumented during run-time execution
using a combination of one or more of the following: random
behaviors, intents from other apps, and control flow graph(s)
maps that attempt to reach certain API calls.

At 214, a comparison with collective app intelligence is
performed to provide an app reputation phase. In some
embodiments, a comparison with collective app intelligence
phase is performed using a URL and IP reputation engine
(e.g., URL and IP reputation engine 110 as shown in FIG. 1).
For example, the collective app intelligence engine can moni-
tor and extract information (e.g., scraping such information
from these various app markets/app stores) on various apps
and associated app developers across public (e.g., legitimate
markets for apps) markets and private (e.g., grey/black mar-
kets for apps), which can be used to compare apps between
such various markets, including with versions of apps on
private app markets. In some embodiments, the app reputa-
tion phase includes running new app findings over an entire
app library. Thus, this phase facilitates leveraging findings
from previous apps to a new scan. In some embodiments,
collective app intelligence can include receiving third party
analysis input, such as third party input identifying known
bad or suspicious IP addresses, URL addresses, SMS num-
bers, telephone numbers, ad network providers, apps, app
developers, app stores, and/or any other information. In some
embodiments, the app reputation phase includes comparing
reputation data for IP addresses (e.g., the IP reputation, such
as [P addresses known to be associated with downloading
malware and/or IP addresses known to be associated with
command and control (C&C) botnet activities), URL/URI
addresses (e.g., the URL/URI reputation, such as URL/URI
addresses known to be associated with downloading malware
and/or URL/URI addresses known to be associated with com-
mand and control (C&C) botnet activities), SMS numbers
(e.g., SMS number blacklists), telephone numbers (e.g., tele-
phone number blacklists), ad network providers, and other
external calls and/or other information associated with apps.
Accordingly, the app reputation phase allows the automated
platform to become more and more intelligent with each new
app scan as it continues to increase its knowledge about apps,
app developers, ad network providers, and related informa-
tion.

At 216, a rule set analysis is performed to provide a mal-
ware detection phase and a behavior-based analysis phase. In
some embodiments, a malware detection phase and a behav-
ior-based analysis phase are performed using a malware
detection engine and a behavior-based analysis engine (e.g.,
malware detection engine 112 and behavior-based analysis
engine 114 as shown in FIG. 1). In some embodiments, the
behavior-based analysis phase includes running data
extracted over each phase of analysis through an extensive set
of’behavioral rules. The behavior-based analysis phase can be
used to determine if the app includes previously known mal-
ware, exhibits new malware behaviors, and/or if the app oth-
erwise poses a risk, (e.g., privacy, security, or other risks). In
some embodiments, enterprise specific (e.g., custom) rules

US 9,178,852 B2

15

are performed (e.g., enterprise defined risks, based on an
enterprise risk profile). For example, enterprise specific (e.g.,
custom) rules can include checks for HIPAA compliance for
healthcare apps, checks for encryption requirements for data
management, and various other types of enterprise specific
rules.

In some embodiments, using these phases, a series of data
collection engines provided by the platform can extract rel-
evant data about the app, which is then fed to a rules engine.
The rules engine extracts relevant data from the information
discovered by the other engines for further analysis, process-
ing, and/or as input into an overall risk assessment based on
an applicable risk profile.

At218, an app risk assessment report is generated based on
the risk assessment for the analyzed app or a bulk set of apps.
In some embodiments, the app risk assessment report is gen-
erated for the customer based on a risk profile (e.g., an app
risk policy) and general or default reporting requirements. In
some embodiments, the app risk assessment report is gener-
ated for the customer based on an enterprise risk profile (e.g.,
enterprise customized app risk policy) and/or customized
reporting requirements. In some embodiments, the app risk
assessment includes various summary findings as well as
supporting data. For example, the app risk assessment can
include an app reputation score and/or other relevant or sup-
porting data.

In some embodiments, the app risk assessment report is
generated as a HyperText Markup Language (HTML) report.
In some embodiments, the app risk assessment report is gen-
erated as a JavaScript Object Notation (JSON) report. Insome
embodiments, the app risk assessment report is generated in a
format specified by a custom enterprise profile. For example,
ACME Corporation can configure their reports to be auto-
matically generated as a JSON report. As another example,
Jane, who is in corporate IT for ACME Corporation, can
configure her reports to be provided as HTML reports, and
Mary, who is also in corporate I'T for ACME Corporation, can
configure her reports to be provided as JSON reports. Various
other customizations for reporting format and categories of
information can also be provided.

As discussed above, the platform for quantifying the risks
of apps for mobile devices uses a series of data collection
engines (e.g., as shown in FIG. 1) for implementing the
phased approach. For example, using the series of data col-
lection engines for collecting various data, such as discussed
above, various new rules can be applied to extract interesting
behaviors or characteristics in apps for performing a risk
assessment of such apps.

In some embodiments, the phased approach facilitates
implementing a feedback loop in which information deter-
mined during one phase can affect actions performed in a
different phase. For example, information learned from a
static analysis phase can affect activities performed in a
dynamic phase. For example, if the static analysis phase for a
given app includes library calls for performing SMS/text
messaging, then during the dynamic phase, emulation tests
can include attempting to determine whether the app attempts
to send any SMS/text messaging and if it does so with or
without previously gaining the user’s permission to send
SMS/text messages. Various other examples for leveraging a
feedback mechanism to enhance the efficiency and effective-
ness of the phased approach should now be apparent to one of
ordinary skill in the art in view of the various embodiments
described herein.

For example, in the byte code analysis and decompilation
phases, the platform can determine that an individual app
sends a text message via seeing SMS APIs used. The platform

25

35

40

45

50

55

60

65

16

can also feed this information to the dynamic analysis engine,
so that the emulator can watch for the SMS to be sent or can
instrument the emulator to send the SMS text. Once the SMS
is sent, the platform can record the number the SMS was sent
to, and the SMS message itself. At the collective intelligence
phase, the SMS number monitored/detected by the dynamic
engine can then be compared to a list of SMS numbers used in
malware apps that communicate with paid SMS numbers
(e.g., acommon malware monetization scheme is to use such
paid SMS numbers). If a match is found, then the platform can
determine that the app should be classified as malware and a
report can be provided showing all of the supporting data.

Various examples of app behaviors that impact app riski-
ness are provided. For example, whether the app is deter-
mined to include malware impacts the app risk assessment. In
particular, this includes both known malware (e.g., previously
identified malware), repackaged malware, new malware used
in targeted attacks, and malware behavior.

As another example, whether the app accesses websites/
URLs that are unsafe or associated with malware impacts the
app risk assessment. In particular, apps that have been
observed to download additional (e.g., malicious) content
from URLs associated with malware impacts the app risk
assessment.

As another example, the platform can apply its own URL
“blacklists” or integrate with third party URL blacklist feed
providers.

As another example, whether the app accesses SMS num-
bers that are unsafe or associated with malware impacts the
app risk assessment. In particular, a common malware tech-
nique is to subscribe a user to an SMS service that will try to
steal user data (e.g., phishing attacks).

As another example, whether the app access SMS numbers
that are associated with premium (paid) services impacts the
app risk assessment. In particular, a common malware tech-
nique is to subscribe a user to a premium SMS service, hiding
the actual messages from the user but accruing charges (e.g.,
certain mal-behaving apps can attempt to generate a monetary
return for the app developer by sending unauthorized SMS
messages, such as using known bad SMS numbers).

As another example, whether the app performs unre-
quested behaviors (e.g., a mass text to a whole address book,
a mass email to a whole address book, an audio or video
recording) impacts the app risk assessment.

As another example, what permissions does the app
request can be analyzed to determine whether such behavior
impacts the app risk assessment (e.g., how do these compare
to the average permission count). In particular, malware
authors usually take advantage of the difficult to interpret
permissions and hide risky behaviors among benign ones to
sneak past the user’s review process.

As another example, the source of the app (e.g., which
market did the app come from) can be analyzed to determine
whether such impacts the app risk assessment. In particular,
some app markets (e.g., app markets in China and Russia) are
known to include higher amounts of malware.

As another example, the developer of the app (e.g., which
developer developed the app) can be analyzed to determine
whether such impacts the app risk assessment. In particular,
some app developers are known for delivering malware or
risky apps in the past while others have better reputations.

As another example, the available market data of the app
(e.g., app rating, number of downloads, developer’s reputa-
tion) can be analyzed to determine whether such impacts the
app risk assessment.

US 9,178,852 B2

17

As another example, whether the app transmits informa-
tion in clear-text (e.g., without encryption) can be analyzed to
determine whether such impacts the app risk assessment.

As another example, whether the app uses encryption for
all of its external communication can be analyzed to deter-
mine whether such impacts the app risk assessment. In par-
ticular, what type of encryption is used and whether the
encryption was implemented correctly can be used for such
app risk assessment.

As another example, whether the app transmits account
user name information (e.g., with or without user permission,
and with or without encryption) can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app transmits account
password information (e.g., with or without user permission,
and with or without encryption) can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app locally stores account
user name information (e.g., with or without user permission,
and with or without encryption) can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app locally stores account
password information (e.g., with or without user permission,
and with or without encryption) can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app tracks location infor-
mation (e.g., with or without user permission, and with or
without encryption) can be analyzed to determine whether
such impacts the app risk assessment. In particular, if the app
tracks location information, how does the app track the loca-
tion (e.g., does the app location track using GPS, using cell
tower triangulation, using GeolP such as using official APIs
or using unofficial APIs).

As another example, whether the app attempts to uniquely
identify the user of the mobile device can be analyzed to
determine whether such impacts the app risk assessment.

As another example, whether the app shares address book
or contact information (e.g., with or without user permission,
and with or without encryption) can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app includes voice
recording capabilities/functions can be analyzed to determine
whether such impacts the app risk assessment.

As another example, whether the app includes picture and/
or video recording capabilities/functions can be analyzed to
determine whether such impacts the app risk assessment.

As another example, whether the app reads/writes to
removable storage (e.g., a compact flash card or other types of
removable storage) can be analyzed to determine whether
such impacts the app risk assessment.

As another example, whether the app performs good
behavior(s) (e.g., adding secondary Digital Rights Manage-
ment (DRM) to protect the app and/or added Virtual Private
Network (VPN) support for secure communications) can be
analyzed to determine whether such impacts the app risk
assessment, in which such good behaviors can be used to
improve the scoring of the app’s risk assessment.

As another example, an app can be blacklisted (e.g., by the
platform and/or by a particular enterprise/customer that can
identify apps to be blacklisted so that such are not available in
the enterprise app store). For example, if a particular app is
blacklisted, such as Dropbox (e.g., or another app), then the
platform can block any apps that match Dropbox. Also, the
platform can also be configured to dynamically extend this
rule for blocking Dropbox to also block any apps that use
Dropbox based on static analysis, dynamic analysis, and/or
other behavior-based analysis and monitoring (e.g., deter-

25

40

45

50

18

mining which apps use or incorporate the Dropbox SDK,
apps that include calls to URLs to Dropbox, etc.).

In some embodiments, an app risk assessment report is
generated based on the risk assessment for an analyzed app,
such as using the phase-based analysis discussed above. In
some embodiments, the app risk assessment report includes
various risks and weights per app. In some embodiments, the
app risk assessment report can be customized for an enter-
prise, such as based on an enterprise’s custom app risk profile
and/or enterprise’s custom report profile. For example, a par-
ticular enterprise, such as a Fortune 500 company can con-
figure a custom app risk profile that grey lists an app if an i0S
app does not use standard Apple terms and conditions (e.g., so
that inside legal counsel for a Fortune 500 company can be
notified of such app to review their custom terms and condi-
tions to determine whether such are acceptable for use by
their employees based on those unique terms and conditions).

FIG. 3 is another functional block diagram of an architec-
ture for quantifying the risks of apps for mobile devices in
accordance with some embodiments. As shown, a cloud-
based platform for quantifying the risks of apps for mobile
devices 302 is provided. The platform 302 includes one or
more processors 304. In some embodiments, the platform is
implemented as a plurality of servers, appliances, virtual
machines, and/or combinations thereof. In some embodi-
ments, the platform performs the functions as described
above with respect to FIGS. 1 and 2.

As also shown, the platform 302 includes a global app
cache 306 for storing previously analyzed apps. The platform
302 also includes policies 310. For example, policies 310 can
include various policies for scanning apps for risk assessment
(e.g., security policies, privacy policies, device/network
integrity policies, etc.). The policies 310 can also include
enterprise specific or custom policies, such as custom policies
for an enterprise customer 320 (e.g., ACME Corporation),
which has an enterprise app store 322 and is in communica-
tion with the platform 302 via the Internet 318 as shown. In
particular, an authorized user of the enterprise customer (e.g.,
a corporate IT security admin of ACME Corporation) can
access the platform 302 using a device 324 via the Internet
318 (e.g., by securely logging in through a web site, accessed
via a URL, such as shown). For example, the authorized user
(e.g., acorporate I'T team member of ACME Corporation) can
configure custom policies, request reports (e.g., individual
app reports, bulk app reports, etc.), and/or manage their enter-
prise account. As also shown, the platform 302 includes vari-
ous rules 308 for performing various analysis on apps, such as
described above with respect to FIG. 2. For example, rules
308 can include various rules (e.g., data and/or executable
instructions) that can be processed by the various engines,
such as shown in FIG. 1, and applied to perform various app
analysis based on an app risk profile, such as implementing
the various phases discussed above with respect to FIG. 2.

As also shown, the platform 302 includes a reports data
store 312 (e.g., database) for storing reports generated by the
platform based on analysis of apps for various users or cus-
tomers, such as enterprise customer 320. For example, vari-
ous reports based on apps analysis for ACME Corporation’s
enterprise app store 322 can be stored in the reports data store.
Various reports based on app analysis for other customers or
users can also be stored in the reports data store.

FIG. 4 is a screen diagram of an apps view of a user
interface for a platform for quantifying risks of apps for
mobile devices in accordance with some embodiments. As
shown, the apps view 402 lists various apps that have been
analyzed including indicating a star rating for each of the
apps, a description of each of the apps, a version of each of the

US 9,178,852 B2

19

apps, a type for each of the apps, categories for each of the
apps, and a date/time for a last upload (e.g., time stamp for
when the app was last uploaded to the platform for analysis).
As also shown, there are various selectable actions under
each, such as Details, Ratings, Edit, and Delete. As also
shown, the user interface for the platform includes different
views, such as for applications (e.g., as shown in 402, users,
groups, categories, settings, reports, Ideas, and My Account).

FIG. 5 is a screen diagram of a detailed report for an app
analyzed by the platform for quantifying the risks of apps for
mobile devices in accordance with some embodiments. In
some embodiments, the detailed report 502 is generated by
the platform for quantifying risks of apps for mobile devices
and can be accessed using a web browser. As shown, the
detailed report 502 provides the output of a report generated
for an “Actions” app for an iOS phone/tablet, which has been
analyzed by the platform and includes a star rating for the app
(e.g., 4 stars as shown), with selectable tabs that include
Details, Rating, and Inspection. As shown, the Inspection tab
is selected and shows the details of the Inspection Report
(e.g., reporting a total score of 87/100, including detailed
scores for malware behaviors of 100/100, privacy behaviors
ot 84/100, and risky behaviors of 91/100. As also shown, a
summary section is provided, a risky behaviors section is
provided, a privacy behaviors section is provided, and a host-
name and [P addresses section are provided (e.g., listing
reputation information for hostnames and IP addresses that
are visited/associated with this app). As would be apparent to
one of ordinary skill in the art in view of the various embodi-
ments described herein, various other details and report for-
mat and details/information can be provided based on the
analysis performed by the platform for quantifying risks of
apps for mobile devices as described herein, including based
on various user defined customizations (e.g., enterprise cus-
tomized reporting).

FIG. 6 is a flow diagram for quantifying the risks of apps
for mobile devices in accordance with some embodiments. At
602, an application for a mobile device is received. At 604, an
automated analysis of the application based on a risk profile
(e.g., using a cloud-based app risk assessment platform/ser-
vice) is performed. At 606, generating a risk score based on
the automated analysis of the application based on the risk
profile is performed.

FIG. 7 is another flow diagram for quantifying the risks of
apps for mobile devices in accordance with some embodi-
ments. At 702, a set of apps for an enterprise app store are
received. At 704, an automated analysis of each of the apps
(e.g., of the set of apps) based on an enterprise risk profile is
performed. At 706, determining an app risk score for each of
the apps (e.g., of the set of apps) based on the enterprise risk
profile is performed. At 708, reporting the app risk scores for
each of the apps (e.g., of the set of apps) based on the enter-
prise risk profile is performed.

For example, using the various techniques described
herein, quantifying the risks of apps for mobile devices can be
provided by leveraging various mobile application manage-
ment (MAM) solutions (e.g., enterprise app stores). In par-
ticular, MAM solutions, also called “enterprise app stores”
store app metadata as well. For example, an enterprise app
store (e.g., enterprise app store 118 as shown in FIG. 1) can
include or be implemented using a commercially available
MAM solution. Example commercially available MAM
products in the market today include those sold by Apperian,
AppCentral, and other commercial vendors. The typical
enterprise app store today has approximately 10to 50 or more
apps inside of it. For example, these apps can be “in-house
apps,” which are enterprise line of business (LOB) applica-

20

35

40

45

55

20

tions for performing a specific task or apps for which the
enterprise wants all employees to have access to for installing
on their mobile devices (e.g., a sales related app for its sales
personnel, and/or other types of apps for all or particular
categories of users). In some embodiments, the platform for
quantifying the risks of apps for mobile devices similarly
supports receiving such store app metadata (e.g., using a bulk
query) to identify which apps in the enterprise app store
violate a policy (e.g., a malware policy, an enterprise policy,
and/or another mobile app policy) using similar techniques as
described herein with respect to various embodiments.

In some embodiments, the in-line filtering of insecure or
unwanted mobile components or communications (e.g., inse-
cure or unwanted behaviors associated with applications for
mobile devices (“apps”), updated versions of apps, commu-
nications to/from apps, operating system components/up-
dates for mobile devices, etc.) for mobile devices further
includes using an off-device scanner for assessing risks for
apps (e.g., for a plurality of different mobile device platforms
based on an anti-malware policy that can identify malware
risks, privacy risks, and/or other risks or issues associated
with apps/app updates, and/or operating system components/
updates for mobile devices, etc.). For example, the in-line
filtering of apps for mobile devices can use the platform
described above with respect to FIGS. 1-7 to provide an
off-device scanner (e.g., cloud-based app analysis) for assess-
ing and quantifying risks for apps.

In some embodiments, the in-line filtering of insecure or
unwanted mobile device software components or communi-
cations can be implemented using a variety of techniques as
described herein. For example, various events can be identi-
fied (e.g., an app download request, an app update request, an
app communication, an update for an operating system/com-
ponents for mobile devices, etc.), and responsive actions can
be performed based on an off-device analysis of the event
(e.g., blocking data, such as blocking an app download
request, blocking an app update request, blocking an app
communication, blocking an update for an operating system/
components, etc.).

In some embodiments, the in-line filtering of insecure or
unwanted mobile device software components or communi-
cations can be implemented by performing in-line filtering at
points where networks are connected, or where devices are
connected to networks, such as a device responsible for fil-
tering being placed in-line on the network before, after, or in
lieu of a routing device, bridging device, access point, cell
tower, etc. For example, in-line filtering can be performed on
both IP networks and cellular networks, as mobile devices
frequently use either or both for communication mediums.

In some embodiments, an in-line filtering device is pro-
vided for performing the in-line filtering of insecure or
unwanted mobile device software components or communi-
cations. In some embodiments, the in-line filtering device
includes a physical/hardware appliance or a virtual appliance
that can perform in-line filtering as described herein. For
example, the in-line filtering device can be implemented as a
standalone (e.g., self-contained functionality that includes
capabilities for performing the in-line filtering functions). As
another example, the in-line filtering device can consume a
data feed from a cloud-based app analysis system (e.g., such
as described above with respect to FIGS. 1-7 disclosing a
cloud-based app analysis system for assessing and quantify-
ing risks for apps). As another example, the in-line filtering
device can consume a feed from an air-gapped/private cloud
version of the app analysis system (e.g., such as described
above with respect to FIGS. 1-7 disclosing a cloud-based app
analysis system for assessing risks for apps). Also, in some

US 9,178,852 B2

21

cases, the data feed that the cloud version or an air-gapped/
private cloud version of the app analysis system can be
received in real-time, can be cached, or some other approach
can be implemented in terms of exposing the app analysis
results data from the app analysis system to the in-line filter-
ing device(s).

In some embodiments, an in-line filtering device is pro-
vided for performing the in-line filtering of a known mali-
cious or undesirable app (e.g., based on analysis of the app,
including, for example, behaviors performed by the app, by
an app analysis system using an app risk policy to profile apps
that are analyzed using a variety of static, dynamic, collective
app analysis intelligence, and/or other techniques, such as
using the various techniques described herein). For example,
for mobile devices, apps are typically downloaded from a
limited set of public app markets (e.g., official app market
places, such as discussed above). For some mobile device
platforms, apps can also be retrieved from more traditional
locations, such as web sites or e-mail communications. In
nearly all cases, apps are transmitted over a network and are
not transferred using physical media, such as CD-ROMs or
pen drives.

In some embodiments, a cloud-based app analysis system
includes findings for known malicious apps available on app
markets and/or from other sources. When a mobile device
requests an app over the network, an in-line filtering device
can intercept the app request. For example, the intercepted
app request can be used to check the requested app against a
data set (e.g., a data feed, such as discussed above) provided
by the app analysis system to determine whether there are
known issues affecting the app (e.g., whether the app violates
an app risk policy, such as whether the app has been deter-
mined to be a known malicious app—associated with or
packaged with malware, such as for an app that includes
malware or performs undesirable behaviors). If the app is
determined to have any such issues (e.g., does not comply
with an app risk policy), the app request can be terminated
(e.g., as it exits the network or as the response that includes
the downloaded app enters the network) and/or some other
action(s) can be performed, depending upon a policy configu-
ration, all before the app is returned to and installed on the
requesting mobile device. In some cases, if the app request
does not match a cached app analysis result or data feed result,
then the app associated with the app request can be commu-
nicated to a cloud-based app analysis system, which can then
dynamically perform an analysis of the app and send back the
app analysis results (e.g., the app request and/or response to
the app request can be queued/quarantined pending the
results being sent back to verify whether or not to allow the
app request to proceed or to perform some other action).
Accordingly, using various techniques described herein, an
app request and/or response to the app request can be inter-
cepted to prevent downloading and installing an undesirable
app using a cloud-based app analysis system and in-line fil-
tering (e.g., an in-line filtering device), as described further
below with respect to FIGS. 8, 9, and 10. For example, the
in-line filtering device can also pass entity or user properties
associated with the app request to the app analysis system. In
particular, entity or user properties associated with the app
request can include, for example, the origin network address
and other identifying properties that are included in the app
request.

FIG. 8 illustrates a flow diagram for in-line filtering of apps
for mobile devices in accordance with some embodiments.
For example, the in-line filtering of insecure or unwanted
mobile device software components or communications (e.g.,
apps and/or updated versions of apps for mobile devices) can

10

15

20

25

30

35

40

45

50

55

60

65

22

be implemented using an end-to-end process as shown in
FIG. 8 and as described below. At 802, an app is uploaded
(e.g., new apps and new versions of apps can be automatically
uploaded from public app stores based on a periodic moni-
toring of apps available in such app stores) to an app analysis
system (e.g., such as the app analysis system as described
above with respect to FIGS. 1-7 or a similar app analysis
system capable of determining whether the app complies with
an app risk policy based on attributes and/or behaviors, which
can be implemented as a cloud-based app analysis system). At
804, the app is analyzed using the app analysis system. For
example, the app can be analyzed once it is uploaded and
findings related to malware, security, privacy, and/or other
issues can be stored. In some cases, the app was previously
uploaded to and analyzed by the app analysis system. In some
cases, the app analysis system periodically checks public app
stores for new apps and/or new versions of apps, automati-
cally uploads such apps/new versions of apps, performs the
automated analysis of such apps/new versions of apps, stores
the results of the analysis of such apps/new versions of apps,
such that the results of the analysis of such apps can be
provided upon request and/or as a data feed (e.g., to subscrib-
ers, including to in-line filtering devices or as components for
app analysis systems in communication with in-line filtering
devices), such as described herein.

At 806, an in-line filtering device intercepts a request for an
app (e.g., an app request) from a mobile device (e.g., such as
an app request directed to an app store, such as a public app
store, a web site, or another app source). At 808, the in-line
filtering device determines a unique identifier for the app. In
some embodiments, a unique identifier for the app is deter-
mined (e.g., calculated) using various techniques, such as
described below.

For example, the request can be allowed to proceed, so that
the app can be received in response to the app request, and a
unique identifier can be calculated based on the received app.
In this example, the unique identifier can be calculated as a
hash of the app file (e.g., using a hashing algorithm such as
discussed above, to generate a unique value calculated based
on the app file), or some other value can be calculated using/
based on the received app. In this example, the app can be
cached/quarantined by the filtering device, or partially held
(e.g., throttle a download of the app), such that the complete
content of the app is not allowed to fully transfer to the mobile
device in this scenario pending results of the analysis of the
app being received and evaluated (e.g., based on a policy).
Thus, in this example, the hash of the app (e.g., or some other
value can be calculated using/based on the received app) can
be used as the unique identifier of the app.

As another example, a unique identifier can be determined
by extracting information transmitted in the app request. In
some cases, the request includes a hash of the app (e.g.,
embedded within a URL/URI of the app request). In such
cases, such a hash value can be extracted to be used as the
unique identifier. In some cases, other information can be
extracted from the app request to be used as a unique identi-
fier. For example, an app request for an i0OS app from the
Apple app store is in the form of a URL/URI that can be
parsed to extract information that can be used as the unique
identifier (e.g., an app request for Angry Birds Star Wars from
a web browser results in the following URL/URI: https://
itunes.apple.com/us/app/angry-birds-star-wars/
1d557137623?7mt=8&ign-mpt=uo %3D2). In this example,
the title of the app can be extracted from the URL/URI (e.g.,
Angry Birds Star Wars) and the App ID number can be
extracted from the URL (e.g., 557137623), which can be used
to verify the app risk analysis for this app based on the App ID

US 9,178,852 B2

23

provided as a unique identifier for the app (e.g., correlated
based on that App ID number as a unique identifier for this
i0S app). Similarly, download requests for apps in other app
stores can also be analyzed, such as for Android apps from the
Google Play app store, in which such a search for Angry Birds
Star Wars from a web browser results in the following
URL/URI: https:/play.google.com/store/apps/details?id=
com.rovio.angrybirdsstarwars.ads.iap&feature=search_
result#?t=W251bGwsMSwyLDEsImNvbS5yb3ZpbyS5
hbmdyeWJpcmRzc3RhendhenMuY WRzLmlheCJId). In this
example, the app name (e.g, Angry Birds Star
Wars) and a unique ID (e.g, W251bGwsMS
LDEsImNvbS5yb3ZpbyShbmdyeWJpcmRzc3Rhendhen
MuYWRzLmlhcCJld) can similarly be extracted from this
app request to the Google Play app store, and which can
similarly then be used to verify the app risk analysis for this
app based on this unique ID provided as a unique identifier for
the app (e.g., correlated based on that unique 1D for this
Android app).

At 810, the unique identifier for the app is submitted to the
app analysis system. The app analysis system can use the
unique identifier to attempt to match existing data and can
then respond indicating whether the app is known to have
issues or not (e.g., violates an aspect of an app risk policy,
such as described herein with respect to various embodi-
ments). For example, the in-line filtering device can submit
the determined unique identifier for the app associated with
the app request to the app analysis system. The app analysis
system can attempt to correlate the unique identifier with
cached or previously determined app analysis results for the
app that corresponds to the unique identifier. If a match is
determined, then the previously determine app analysis
results can be provided in response to the in-line filtering
device. In some cases, a match is not determined (e.g., the app
was not previously analyzed by the app analysis system or
that version of that app was not previously analyzed by the
app analysis system). In such cases, the app analysis system
can dynamically upload the app (e.g., from the app store
and/or from the in-line filtering device, or another source),
perform the app analysis on the uploaded app, and then pro-
vide the app analysis results to the in-line filtering device.

At 812, a response is received from the app analysis sys-
tem. For example, the in-line filtering device receives the
response from the app analysis system. The response can
indicate whether the app is known to have issues or not (e.g.,
violates an aspect of an app risk policy, such as described
herein with respect to various embodiments). In some cases,
the response can indicate that the app does not match any
previously cached app analysis results. In some cases, the
response can further include newly generated app analysis
results for the app. In some embodiments, the response
includes an app analysis report, such as described herein with
respect to various embodiments. For example, the app analy-
sis report can be used by the filtering device to automatically
provide more information concerning the risks associated
with the app as determined by the app analysis system, which
can be reported to I'T and/or a user of the mobile device.

In some embodiments, a data feed is received by the in-line
filtering device from the app analysis system, such that the
in-line filtering device can determine whether it has already
received the app analysis system results for the app based on
information provided in the data feed using the unique iden-
tifier to correlate with previous app analysis scanning results
supplied in the data feed. If not, then the in-line filtering
device can query the app analysis system based on the unique
identifier using the various techniques described herein (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

24

an app query for or a bulk app query can be communicated to
the cloud-based app analysis system).

At 814, the in-line filtering device can perform an action
based upon the response received from the app analysis sys-
tem. For example, the in-line filtering device can be config-
ured to block the transfer (e.g., prevent the complete down-
load) of the requested app to the mobile device if the app is
known to be malicious (e.g., was determined by the app
analysis system to be malicious, such as including malware or
violating some other aspect of a malware policy) and/or to
have other issues of concern. As another example, the in-line
filtering device can be configured to quarantine the app for
further analysis, for IT approval for an entity associated with
the mobile device, for approval by a user of the mobile device
after acknowledgement of potential threats associated with
the app are presented in a display on the mobile device to the
user, and/or some other action(s) can be performed based on
various configurations.

In some embodiments, the in-line filtering of insecure or
unwanted mobile device software components or communi-
cations is implemented to filter traffic for app requests from
various devices, not just mobile devices. For example, the
filtering device (e.g., in-line filtering device) can also apply
filtering logic to apps transferred over the network by other
kinds of devices. For example, if a desktop Apple iTunes®
client executing on a desktop computer is used to purchase
and download a mobile app, the filtering device can apply the
same logic to block the download of the app to that desktop
computer. In other words, an app can be blocked any time it is
transferred over the network, if it is known to have issues and
not only when requested for download by a mobile device.

FIG. 9 illustrates a functional block diagram of an archi-
tecture for in-line filtering of apps for mobile devices after
receiving downloaded apps in accordance with some embodi-
ments. In particular, FIG. 9 illustrates an example of in-line
filtering of apps based on app analysis by an app analysis
system after receiving an app (e.g., and a unique identifier for
the app) from the filtering device. As shown, a device 902
(e.g., a mobile device, a desktop device, and/or another type
of user device) sends an app download request 904 that is
intercepted at 906 by a filtering device 908 (e.g., an in-line
filtering device, such as a gateway, security appliance (such as
a firewall appliance that can be integrated with other security
components, such as IDS/IPS, DLP, VPN, etc.), router, or
another type of in-line filtering device). The app download
request is forwarded by the filtering device 908 at 910 to a
network 912 (e.g., the Internet, and/or other networks, such as
IP networks and/or cellular networks), which is then commu-
nicated at 914 to an app store 916. The app 918 is downloaded
from the app store 916 at 920 over the network 912 at 922 to
the filtering device 908.

In some embodiments, the filtering device 908 identifies
the app download request 904 and determines a unique iden-
tifier for the app, such as using one or more of the techniques
described herein (e.g., calculating a unique value based on the
downloaded app 918). The filtering device 908 communi-
cates the unique identifier for the app at 924 to a network 926
(e.g., the Internet, and/or other networks, such as IP networks
and/or cellular networks), which is then communicated at 928
to an app analysis system 930. As discussed above, the app
analysis system 930 determines whether it has results for the
app based on the unique identifier and provides any such app
analysis results 932 at 934 to the filtering device 908. In some
cases, as shown at 936, the filtering device 908 determines at
938 whether or not the app should be permitted for download
to the client device 902 based on the app analysis results 932.
If the app is not permitted for download to the client device

US 9,178,852 B2

25

902 based on the app analysis results 932, then the app down-
load is rejected at 940 as communicated to the device 902 at
942 (e.g., a notification can be communicated to the device
902 informing the user that the app cannot be downloaded due
to the app analysis for the app and an app risk profile associ-
ated with the device). Otherwise, the app 944 is downloaded
at 946 to the device 902 as shown.

In some embodiments, the in-line filtering device receives
the app analysis results 932 and then applies such results to a
custom app risk profile to determine whether the app is a risk
or not, and/or to determine what action to perform based on
the app risk analysis based on the app analysis results 932 and
app risk profile. For example, the filtering device can be used
to protect an enterprise network, such as for the ACME Cor-
poration. IT for ACME Corporate can configure a custom
enterprise profile for app risks that can specify one or more
criteria for apps that can or cannot be downloaded to devices
via the enterprise network for the ACME Corporation. In this
example, if the ACME Corporation has an app risk profile that
prohibits downloading of apps associated with known mal-
ware, then if Bob, who is an employee of ACME Corporation,
attempts to download (e.g., over the ACME Corporation Wi-
Fi, wired network, etc.) a new gaming app that has been
packaged with known malware to his Android tablet, then
Bob’s app download request can be denied using the tech-
niques described above with respect to FIG. 9.

In some embodiments, if the app analysis system 930
determines that it does not already have app analysis results
previously determined (e.g., cached or otherwise stored) for
the app based on the unique identifier (e.g., if no such analysis
has previously been performed for the app by the app analysis
system, or if the analysis should be updated, based on a last
time of analysis/scanning of the app, based on new rules or
analysis available to perform on the app, and/or based on
other events, criteria, and/or configuration settings/param-
eters), then the app analysis system can be configured to
dynamically download and analyze the app in response to this
app query. In some embodiments, the filtering device 908
identifies a request to download an app (e.g., an app request).
The filtering device 908 submits the app to an app analysis
component (e.g., an app analysis engine, such as the app
analysis system) capable of analyzing the app. The app analy-
sis component can reside on the filtering device or on another
separate system on the same network, and/or in the cloud
(e.g., the app analysis system 930). The app analysis compo-
nent is responsible for identifying any malware, security,
privacy, behaviors, or other similar related issues associated
with the app. The app analysis component is responsible for
storing the results of such app analysis (e.g., caching the app
analysis results to speed future responses to queries for app
analysis for that particular app/version of that app), and for
returning the results of the app analysis to the filtering device
908. As similarly discussed above, the filtering device 908
can perform an action(s) based upon the response received,
such as blocking a transfer (e.g., download) of the app, allow-
ing the transfer of the app, and/or some other action(s).

FIG. 10 illustrates a functional block diagram of an archi-
tecture for in-line filtering of apps for mobile devices before
downloading requested apps in accordance with some
embodiments. In particular, FIG. 10 illustrates an example of
in-line filtering of apps based on app analysis by an app
analysis system before allowing the app request to be down-
loaded from an app store. As shown, a device 1002 (e.g., a
mobile device, a desktop device, and/or another type of user/
client device) sends an app download request 1004 that is
intercepted at 1006 by a filtering device 1008 (e.g., an in-line
filtering device, such as a gateway, security appliance (such as

20

40

45

50

26

a firewall appliance that can be integrated with other security
components, such as IDS/IPS, DLP, VPN, etc.), router, or
another type of in-line filtering device). The app download
request is forwarded by the filtering device 1008 at 1010 to a
network 1012 (e.g., the Internet, and/or other networks, such
as [P networks and/or cellular networks), which is then com-
municated at 1014 to an app analysis system 1016. In some
embodiments, the filtering device 1008 identifies the app
download request 1004 and determines a unique identifier for
the app, such as using one or more of the techniques described
herein. For example, the filtering device 1008 can communi-
cate the unique identifier for the app at 1010 to network 1012,
which is then communicated at 1014 to an app analysis sys-
tem 1016. As discussed above, the app analysis system 1016
determines whether it has results for the app based on the
unique identifier and provides any such app analysis results
1018 at 1020 to the filtering device 1008. As similarly dis-
cussed above with respect to FIG. 9, if the app has not been
previously analyzed (e.g., or if the analysis should be
updated, based on a last time of analysis/scanning of the app,
based on new rules or analysis available to perform on the
app, and/or based on other events, criteria, and/or configura-
tion settings/parameters), then the app can be dynamically
uploaded and analyzed to generate new/updated app analysis
results to provide to the filtering device 1008. As shown, the
filtering device 1008 determines at 1024 whether or not the
app should be permitted for download to the client device
1002 based on the app analysis results 1018. If the app is not
permitted for download to the client device 1002 based on the
app analysis results 1018, then the app download is rejected at
1036 as communicated to the device 1002 at 1026 (e.g., a
notification can be communicated to the device 1002 inform-
ing the user that the app cannot be downloaded due to the app
analysis for the app and an app risk profile associated with the
device). Otherwise, the app download request is transmitted
at 1028 to a network 1030 (e.g., the Internet, and/or other
networks, such as IP networks and/or cellular networks),
which is then communicated at 1032 to an app store 1034. For
example, at this point, the requested app can then be down-
loaded from the app store 1034 over the network 1030 to the
filtering device 1008 and then downloaded to the device 1002
(e.g., on which the app can be installed after the app download
is completed).

In some embodiments, the in-line filtering device 1008
receives the app analysis results 1018 and then applies such
results to a custom app risk profile to determine whether the
app is arisk or not, and/or to determine what action to perform
based on the app risk analysis based on the app analysis
results 1018 and app risk profile. For example, the filtering
device can be used to protect an enterprise network, such as
for the ACME Corporation. IT for ACME Corporate can
configure a custom enterprise profile for app risks that can
specify one or more criteria for apps that can or cannot be
downloaded to devices via the enterprise network for the
ACME Corporation. In this example, if the ACME Corpora-
tion has an app risk profile that prohibits downloading of apps
associated with known malware, then if Bob, who is an
employee of ACME Corporation, attempts to download (e.g.,
over the ACME Corporation Wi-Fi, wired network, etc.) a
new gaming app that has been packaged with known malware
to his Android tablet, then Bob’s app download request can be
denied using the techniques described above with respect to
FIG. 10.

FIG. 11 illustrates a functional block diagram of an archi-
tecture for in-line filtering of app market search results for
mobile devices in accordance with some embodiments. In
particular, FIG. 11 illustrates an example of in-line filtering of

US 9,178,852 B2

27

app market search results based on app analysis by an app
analysis component after receiving a mobile app search
request from the filtering device to facilitate in-line filtering
of marketplace searches for insecure or unwanted apps.

As shown, a device 1102 (e.g., a mobile device, a desktop
device, and/or another type of user device) sends a mobile app
search request 1104 that is intercepted at 1106 by a filtering
device 1108 (e.g., an in-line filtering device, such as a gate-
way, security appliance (such as a firewall appliance that can
be integrated with other security components, such as IDS/
1PS, DLP, VPN, etc.), router, or another type of in-line filter-
ing device). The mobile app search request is forwarded by
the filtering device 1108 at 1110 to a network 1112 (e.g., the
Internet, and/or other networks, such as IP networks and/or
cellular networks), which is then communicated at 1114 to an
app store 1116. At 1118, the app store 1116 sends a search
response 1118 (e.g., a list of apps returned by the app store in
response to the mobile app search request), which is returned
to the filtering device 1108 at 1120. At 1122, the filtering
device 1108 sends the search response 1118 to an analysis
component 1128. As shown, the analysis component 1128
can be integrated or local to the filtering device 1108 or can be
implemented as a cloud-based service (e.g., a cloud-based
app analysis system, such as described herein with respect to
various embodiments) communicated to via a network 1124
(e.g., the Internet, and/or other networks, such as IP networks
and/or cellular networks) as shown at 1122 and 1126. In some
embodiments, the analysis component 1128 identifies each
app in the search response 1118. In some embodiments, the
filtering device 1108 parses the search response 1118 to iden-
tify the apps included in the app store search results and then
to generate a bulk app query that specifies each of those
identified apps, in which the bulk app query is communicated
to the analysis component 1128. In some embodiments, an
APl is provided that supports app store search results, such as
search response 1118, to be specified for parsing and app
analysis of identified apps by the app analysis component
1128. As shown, the analysis component 1128 generates app
analysis results 1130 for each app in the search response 1118
(e.g., using various techniques described herein, including
based on cached and/or dynamically generated new app
analysis results for one or more of the app identified in the app
search response 1118). At 1132, the analysis results 1130 are
communicated to the filtering device 1108. Based on the
analysis results 1130 (e.g., and possibly an app risk policy,
such as an enterprise configured app risk policy), the filtering
device 1108 generates a filtered search response 1134 that is
communicated to the device 1102 as shown at 1136. For
example, the filtered search response 1134 can include all or
a subset of the apps identified in the search response 1118
based on the analysis results 1130 and/or other information
(e.g., such as warnings regarding risks associated with one or
more apps identified in the app search results included in or
filtered out of apps listing included in the filtered search
response 1134).

For example, assume that a user of the device 1102 is Bob,
who is an employee of ACME Corporation and using ACME
Corporation’s corporate network to perform app market
searches, and ACME Corporation implements a filtering
device 1108 for their corporate network(s) to facilitate in-line
filtering of marketplace searches for insecure or unwanted
apps. If Bob searches a market place for an app using ACME
Corporation’s corporate network (e.g., the ACME Corpora-
tion Wi-Fi, wired network, etc.), then the search results can be
modified to indicate that an app is known to have issues, or
can be removed from the app search results entirely, if one or
more of the apps in the app search results fail to comply with

10

15

20

25

30

35

40

45

50

55

60

65

28

an app risk policy configured for ACME Corporation. Such
responsive action(s) can be performed to alert the user, in this
case, Bob, or to prevent the user from downloading and
installing such insecure or unwanted app(s). In this scenario,
the filtering device 1108 identifies an app search request,
receives the app search results, and then identifies a list of
apps returned in the results. This list of apps is submitted to an
analysis component 1128 (e.g., the app analysis system, such
as described herein), and a response is received for, at least, all
apps known to have issues. The filtering system then modifies
the response, possibly highlighting issues, removing some
content, and/or performing some other action(s) based on a
configuration policy. For example, if Bob performs a search
for Angry Birds for the Android platform, then the app search
results would typically return multiple versions of Angry
Birds (e.g., Angry Birds Space, Angry Birds Star Wars, etc.).
However, if any of those versions of Angry Birds were deter-
mined to have been repackaged with malware or other unde-
sirable content/functionality, then the filtering device can
remove such apps from the apps results listing (e.g., and can
possibly also include a warning notifying Bob that such apps
were removed from the search results apps listing and the
reasons for their removal).

FIG. 12 illustrates a functional block diagram of an archi-
tecture for in-line filtering of insecure or unwanted mobile
device communications in accordance with some embodi-
ments. In particular, FIG. 12 illustrates an example of in-line
filtering of insecure or unwanted mobile device communica-
tions using the filtering device to facilitate in-line filtering of
unwanted mobile device communications.

As shown, a device 1202 (e.g., a mobile device) sends
mobile device communication data 1204 (e.g., bad data that is
associated with insecure or unwanted mobile device commu-
nications) that is intercepted at 1206 by a filtering device 1208
(e.g., an in-line filtering device, such as a gateway, security
appliance (such as a firewall appliance that can be integrated
with other security components, such as IDS/IPS, DLP, VPN,
etc.), router, or another type of in-line filtering device). The
mobile device communication data is forwarded by the filter-
ing device 1208 at 1210 to an analysis component 1216. As
shown, the analysis component 1216 can be integrated or
local to the filtering device 1208 or can be implemented as a
cloud-based service (e.g., a cloud-based app analysis system,
such as described herein with respect to various embodi-
ments) communicated via a network 1212 (e.g., the Internet,
and/or other networks, such as IP networks and/or cellular
networks) as shown at 1210 and 1214. In some embodiments,
the analysis component 1216 identifies bad data that is asso-
ciated with insecure or unwanted mobile device communica-
tions in the mobile device communication data 1204 and
generates analysis results 1218 (e.g., identifying such mobile
device communication data 1204 as being associated with
insecure or unwanted mobile device communications, and in
some cases, identifying one or more apps installed on the
mobile device 1202 associated with such insecure or
unwanted mobile device communications, using various
techniques described herein). At 1220, the analysis results
1218 are allowed, blocked, and/or some other action is per-
formed as shown (e.g., depending on an app risk policy as
applied to the analysis results). In some cases, as shown at
1221, based on the analysis results 1218 (e.g., and possibly an
app risk policy, such as an enterprise configured app risk
policy), at 1222, the filtering device 1208 determines that the
mobile device communication data is associated with inse-
cure or unwanted mobile device communications, and as
shown at 1224, the filtering device 1208 blocks the mobile
device communication(s) or performs other responsive ac-

US 9,178,852 B2

29

tion(s). In some cases, as shown at 1221, based on the analysis
results 1218 (e.g., and possibly an app risk policy, such as an
enterprise configured app risk policy), at 1226, the filtering
device 1208 determines that the mobile device communica-
tion data is not associated with insecure or unwanted mobile
device communications, and as shown at 1228, the filtering
device 1208 allows the mobile device communication(s).

Mobile devices can generate insecure or unwanted data
while connected to a network (e.g., an enterprise network, an
1P network, a cellular network, and/or other network(s)). For
example, an app installed on a mobile device can be malicious
and can attempt to send a premium SMS message, can
attempt to send sensitive data such as the address book or any
other data of value without adequate authorization to a remote
network. For example, assume that a user of the device 1202
is Bob, who is an employee of ACME Corporation and uses
ACME Corporation’s corporate network to perform mobile
device communications, and ACME Corporation implements
afiltering device 1208 for their corporate network(s) to facili-
tate in-line filtering of insecure or unwanted mobile device
communications. In this scenario, the filtering device 1208
identifies transmission of insecure or unwanted mobile
device-specific data from/to Bob’s mobile device 1202, and
can perform responsive action(s) accordingly. For example, if
Bob’s mobile device is connected to the ACME Corporation
network, and it attempts to send insecure or unwanted mobile
device communications (e.g., a premium SMS message to a
known bad SMS number, or other insecure or unwanted
mobile device communications), then the filtering device can
identify the attempt to insecure or unwanted mobile device
communications (e.g., a message content and a destination
for the premium SMS message to the known bad SMS num-
ber) and can perform a responsive action(s), such as alerting
the user or carrier, blocking the message, and/or some other
action(s). As will now be apparent to one of ordinary skill in
the art in view of the various embodiments disclosed herein,
there are a number of other events that can be detected by the
filtering device 1208 including, for example, transmission of
GPS coordinates, address book contents, sensitive banking
details potentially extracted from a database file used by an
app, and various other events/content that can be associated
with insecure or unwanted mobile device communications.
Once such insecure or unwanted mobile device communica-
tions are detected, then the filtering device can perform vari-
ous corrective and/or responsive action(s) based upon a con-
figuration policy (e.g., a policy can be configured based on an
enterprise associated with the network, associated with the
mobile device, and/or associated with the user).

For example, rules can be used to identify particular events
that can be exported from the app analysis system (e.g., an app
analysis component or cloud-based app analysis system) in a
format suitable for use by the filtering device, in a manner
such as similarly discussed above with respect to various
embodiments. These rules can include, for example, rules for
the following: detection of known risky SMS numbers; detec-
tion of known risky apps (e.g., APKs, IPAs, etc.); detection of
known risky app components (e.g., DEX files, executables,
etc.); detection of known risky URL/URI or hostname or IP
address or e-mail address, and other information; ability to
detect known risky DRM and non-DRM protected apps (e.g.,
in particular, in the case of Apple iOS® apps); and detection
of bot-net command and control (C&C) channels. For the
above listed rules, data used for identification and blocking
can be provided by an app analysis system to the filtering
device using the various techniques described herein.

FIG. 13 illustrates a functional block diagram for in-line
filtering of app data communications for mobile devices

10

15

20

25

30

35

40

45

50

55

60

65

30

based on a policy in accordance with some embodiments. In
particular, FIG. 13 illustrates an example of in-line filtering of
app data for mobile devices based on a policy using the
filtering device to facilitate in-line filtering of app data for
mobile devices based on apolicy (e.g., filtering mobile device
app traffic as defined by a policy, such as a mobile device
traffic policy, which can be an enterprise policy for mobile
device traffic or other configurable and/or customized
policy).

As shown, a device 1302 (e.g., a mobile device, a desktop
device, and/or another type of user device) communicates
mobile device app traffic data 1304 that is intercepted at 1306
by a filtering device 1308 (e.g., an in-line filtering device,
such as a gateway, security appliance (such as a firewall
appliance that can be integrated with other security compo-
nents, such as IDS/IPS, DLP, VPN, etc.), router, or another
type of in-line filtering device). The mobile device app traffic
data is forwarded by the filtering device 1308 at 1310 to a
policy component 1316. As shown, the policy component
1316 can be integrated or local to the filtering device 1308 or
can be implemented as a cloud-based service (e.g., a cloud-
based app analysis system, such as described herein with
respect to various embodiments) communicated to via a net-
work 1312 (e.g., the Internet, and/or other networks, such as
IP networks and/or cellular networks) as shown at 1310 and
1314. In some embodiments, the policy component 1316
identifies mobile device app traffic data 1304 that violates an
aspect of a policy and generates policy results 1318 (e.g.,
identifying such mobile device app traffic data 1304 as being
associated with mobile device app traffic data communica-
tions that are in compliance or in violation of a policy, and in
some cases, identifying one or more apps installed on the
mobile device 1302 associated with mobile device app traffic
data communications that are determined to violate an aspect
of'the policy, such as an enterprise configured app risk policy,
using various techniques described herein). At 1320, the
policy results 1318 are communicated to the filtering device
1308. In some cases, as shown at 1321, based on the analysis
results 1318, at 1322 the filtering device 1308 determines that
the mobile device app traffic data 1304 is not compliant with
a policy, and as shown at 1324, the filtering device 1308
blocks the mobile device app traffic data communication(s) or
performs other corrective or responsive action(s). In some
cases, as shown at 1321, based on the analysis results 1318, at
1326, the filtering device 1308 determines that the mobile
device app traffic data is compliant with a policy, and as
shown at 1328, the filtering device 1308 allows the mobile
device app traffic data communication(s).

In particular, a growing need of organizations (e.g., enter-
prises, and/or other types of organizations) is to identify the
source of traffic observed on the network, and to implement
filtering of traffic-based knowledge of the source, combined
with a policy (e.g., a mobile device traffic policy). Within the
context of mobile apps, there is an increasing need to identify
traffic that originates from mobile device operating systems
or apps for mobile devices, and to allow for aspects of that
traffic to be filtered, depending upon a configuration policy
(e.g., a mobile device traffic policy). For example, assume
that a user of the device 1302 is Bob, who is an employee of
ACME Corporation and using ACME Corporation’s corpo-
rate network to perform mobile device communications, and
ACME Corporation implements a filtering device 1308 for
their corporate network(s) to facilitate in-line filtering of app
data for mobile devices based on a policy (e.g., an enterprise
configured policy for ACME Corporation’s enterprise net-
work(s) for mobile device traffic). In this scenario, if Bob’s
mobile device executes an operating system that “phones

US 9,178,852 B2

31

home” in order to obtain a software update, then the filtering
device 1308 can intercept this request, determine that it is
originating from a particular operating system component on
Bob’s mobile device, consult a policy (e.g., an enterprise
configured policy for ACME Corporation’s enterprise net-
work(s)), and then optionally allow or deny the request to
complete based on the policy. As another example, if Bob’s
mobile device includes an app, such as a chat app or a file
transfer app, and that app attempts to transfer data to a user
outside of the network, the filtering device 1308 can identify
the app in use based on characteristics of traffic being moni-
tored by the filtering device, the filtering device can identify
the transfer attempt, and the filtering device can perform a
corrective and/or responsive action(s) based on a policy (e.g.,
an enterprise configured policy for ACME Corporation’s
enterprise network(s) for mobile device traffic), such as
blocking the transter and/or performing some other action(s).
Various other use cases will now be apparent to one of ordi-
nary skill in the art in view of the various embodiments
disclosed herein.

In some embodiments, various techniques described
herein are used to provide in-line filtering of data on cellular
data networks. In particular, mobile devices frequently com-
municate over traditional IP networks, as well as over cellular
data networks (e.g., 4G/LTE, and/or other cellular networks).
Cellular data network providers generally have an interest in
managing the security and privacy related aspects of their
networks, and require the capability to filter mobile device
software components and communications on the cellular
data network side. The various embodiments and techniques
described herein (e.g., as discussed above with respect to
FIGS. 8-13) apply to cellular data networks, traditional IP
networks, or any data network that carries application traffic
as will now be apparent to one of ordinary skill in the art in
view of the various embodiments disclosed herein.

In some embodiments, various techniques described
herein are used to provide in-line filtering of mobile app
related network data to facilitate mobile app network moni-
toring in conjunction with passive vulnerability analysis,
intrusion detection (IDS), intrusion prevention (IPS), and/or
data loss prevention (DLP). In particular, various passive
vulnerability analysis systems, IDS, and/or IPS systems can
be used that monitor the network in order to examine all traffic
that is passing past a particular point in a network. This traffic
can be analyzed and traffic patterns can be recognized that are
used to determine whether vulnerable software, configura-
tions, or other issues are present on the network. Such net-
work-based analysis techniques can be used to build func-
tionality into a platform to have it embed data obtained from
a mobile app analysis system, or to communicate with a
mobile app analysis system, in order to, for example, identify
the transfer of mobile apps on the network that are known or
determined to be likely to be/or at risk of being affected by
security, privacy, and/or other related issues or policy defined
issues, or to identify communications coming from or going
to mobile apps, that are affected by these same kinds of issues.
Identification of issues of concern can be used by systems of
this type to generate alerts or take other corrective or respon-
sive action(s). Accordingly, as will now be apparent to one of
ordinary skill in the art in view of the various embodiments
disclosed herein, combining such techniques and systems
with techniques for in-line filtering of insecure or unwanted
components or communications for mobile devices as dis-
closed herein provides an enhanced capability to detect and
respond to various issues (e.g., insecure or unwanted mobile
device software components or communications).

40

45

55

32

In some embodiments, various techniques described
herein are used to provide in-line filtering of mobile app
related network data to facilitate event alerting and response.
For example, the various techniques and mechanisms
described above can generally be applied to detect and/or
block unwanted traffic and/or behaviors related to mobile
devices. When detecting an insecure and/or unwanted event,
the system has many options in terms of how to alert or
respond, for example, blocking or performing other correc-
tive and/or responsive action(s). For example, alerts can be
sent from the system (e.g., a platform that includes the filter-
ing device and/or the analysis component or cloud-based
analysis system) via text message (SMS), automated phone
call, e-mail, and/or other forms (e.g., logging, reporting, etc.).
Responsive actions can include, for example, quarantining of
malicious files or traffic, logging of details to a data store of
some sort, quarantining of'a mobile device, or shutting down
a mobile device, and more.

FIG. 14 illustrates a flow diagram for in-line filtering of
apps for mobile devices in accordance with some embodi-
ments. At 1402, intercepting a request for downloading an
application (“app”) to amobile device is performed. At 1404,
modifying a response to the request for downloading the
application to the mobile device is performed. In some
embodiments, the response includes a notification that the
application cannot be downloaded due to an application risk
policy violation. In some embodiments, in-line filtering of
apps for mobile devices further includes filtering traffic in-
line from the mobile device to a network (e.g., the Internet);
determining that the filtered traffic from the mobile device
includes the request for downloading the application to the
mobile device; and determining the response to the applica-
tion request based on an application risk policy, in which the
application risk policy is configured for an enterprise, and in
which the mobile device is associated with the enterprise. In
some embodiments, in-line filtering of apps for mobile
devices further includes determining the response based on an
application risk assessment for the application, in which the
application risk assessment is based at least in part on a
behavior associated with the application. In some embodi-
ments, in-line filtering of apps for mobile devices further
includes determining the application associated with the
request violates a policy (e.g., an application risk policy)
based on an application analysis (e.g., an automated risk
assessment) of the application.

FIG. 15 illustrates another flow diagram for in-line filtering
of'apps for mobile devices in accordance with some embodi-
ments. At 1502, in-line filtering of traffic from a mobile
device to a network (e.g., the Internet) is performed. At 1504,
identifying an application (“app”) request from the in-line
filtering of traffic from the mobile device is performed, in
which the application request includes a request to download
an application to the mobile device. At 1506, modifying a
response to the application request that is communicated to
the mobile device is performed. In some embodiments, the
modified response includes a notification that the application
cannot be downloaded due to an application risk policy vio-
lation. In some embodiments, in-line filtering of apps for
mobile devices further includes determining the response to
the application request based on an application risk policy. In
some embodiments, in-line filtering of apps for mobile
devices further includes determining the response to the
application request based on an application risk policy, in
which the policy includes an application risk profile based on
behavior associated with the application. In some embodi-

US 9,178,852 B2

33

ments, in-line filtering of apps for mobile devices further
includes intercepting application requests from a plurality of
mobile devices.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system for in-line filtering of applications for mobile
devices, comprising:

a hardware processor of an inline filtering device config-

ured to:

intercept a request for downloading an application to a

mobile device;

throttle the request for downloading the application to the

mobile device pending determination of a result of a risk
analysis of the application based on an application risk
policy, wherein the application is blocked from complet-
ing a transfer to the mobile device while it is throttled at
the inline filtering device;

generate arisk score of the application as a result of the risk

analysis of the application based on the application risk
policy, wherein the generation of the risk score com-
prises:

check an application cache comprising:

determine whether the application has been previously

analyzed based on the application risk policy;

in the event that the application has been previously ana-

lyzed, determine whether a risk score of the application
is to be updated based on an updating rule that is trig-
gered if a last time that the application has been previ-
ously analyzed exceeds a configured setting; and

in the event that the application has been previously ana-

lyzed, and

in the event that the updating rule was not triggered, return

a previously determined risk score of the application;
and
if the application has been previously analyzed and the
updating rule was triggered based on a determination
that one or more new rules or analysis are available to
perform on the application, then the application is to be
analyzed again based on the application risk policy, and

determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof;

modify a response to the request for downloading the appli-

cation to the mobile device based on the risk score; and

a memory coupled to the hardware processor and config-

ured to provide the hardware processor with instruc-
tions.

2. The system recited in claim 1, wherein the response
includes a notification that the application cannot be down-
loaded due to a violation of the application risk policy.

3. The system recited in claim 1, wherein the hardware
processor is further configured to:

filter traffic in-line from the mobile device to the Internet;

determine that the filtered traffic from the mobile device

includes the request for downloading the application to
the mobile device; and

determine the response to the application request based on

the application risk policy, wherein the application risk
policy is configured for an enterprise, and wherein the
mobile device is associated with the enterprise.

4. The system recited in claim 1, wherein the hardware
processor is further configured to:

25

30

35

40

45

50

60

65

34

determine the response based on an application risk assess-
ment for the application, wherein the application risk
assessment is based at least in part on a behavior asso-
ciated with the application.

5. The system recited in claim 1, wherein the hardware
processor is further configured to:

determine the application associated with the request vio-

lates the application risk policy based on an application
analysis of the application.

6. A system for in-line filtering of applications for mobile
devices, comprising:

a hardware processor of an inline filtering device config-

ured to:

perform in-line filtering of traffic from a mobile device to

the Internet;

identify an application request from the in-line filtering of

traffic from the mobile device to the Internet, wherein
the application request includes a request to download
an application to the mobile device;

throttle the request for downloading the application to the

mobile device pending determination of a result of a risk
analysis of the application based on an application risk
policy, wherein the application is blocked from complet-
ing a transfer to the mobile device while it is throttled at
the inline filtering device;

generate a risk score ofthe application as a result of the risk

analysis of the application based on the application risk
policy, wherein the generation of the risk score com-
prises:

check an application cache comprising:

determine whether the application has been previously

analyzed based on the application risk policy;

in the event that the application has been previously ana-

lyzed, determine whether a risk score of the application
is to be updated based on an updating rule that is trig-
gered if a last time that the application has been previ-
ously analyzed exceeds a configured setting; and

in the event that the application has been previously ana-

lyzed, and

in the event that the updating rule was not triggered, return

a previously determined risk score of the application;
and
if the application has been previously analyzed and the
updating rule was triggered based on a determination
that one or more new rules or analysis are available to
perform on the application, then the application is to be
analyzed again based on the application risk policy, and

determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof;

modify a response to the application request that is com-

municated to the mobile device based on the risk score;
and

a memory coupled to the hardware processor and config-

ured to provide the hardware processor with instruc-
tions.

7. The system recited in claim 6, wherein the modified
response includes a notification that the application cannot be
downloaded due to a violation of the application risk policy.

8. The system recited in claim 6, wherein the hardware
processor is further configured to:

determine the response to the application request based on

the application risk policy.

9. The system recited in claim 6, wherein the hardware
processor is further configured to:

US 9,178,852 B2

35

determine the response to the application request based on
the application risk policy, wherein the application risk
policy includes an application risk profile based on
behavior associated with the application.

10. The system recited in claim 6, wherein the hardware
processor is further configured to:

intercept application requests from a plurality of mobile

devices.

11. A method of in-line filtering of applications for mobile
devices, comprising:

performing in-line filtering of traffic from a mobile device

to the Internet using a hardware processor of an inline
filtering device;

identifying an application request from the in-line filtering

of traffic from the mobile device to the Internet, wherein
the application request includes a request to download
an application to the mobile device;

throttling the request for downloading the application to

the mobile device pending determination of a result of a
risk analysis of the application based on an application
risk policy, wherein the application is blocked from
completing a transfer to the mobile device while it is
throttled at the inline filtering device;

generating a risk score of the application as a result of the

risk analysis of the application based on the application
risk policy, wherein the generation of the risk score
comprises:

checking an application cache comprising:

determining whether the application has been previously

analyzed based on the application risk policy;
in the event that the application has been previously ana-
lyzed, determining whether a risk score of the applica-
tion is to be updated based on an updating rule that is
triggered if a last time that the application has been
previously analyzed exceeds a configured setting; and

in the event that the application has been previously ana-
lyzed, and

in the event that the updating rule was not triggered, return-

ing a previously determined risk score of the application;
and
if the application has been previously analyzed and the
updating rule was triggered based on a determination
that one or more new rules or analysis are available to
perform on the application, then the application is to be
analyzed again based on the application risk policy, and

determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof;

modifying a response to the application request that is

communicated to the mobile device based on the risk
score.

12. The method of claim 11, wherein the modified response
includes a notification that the application cannot be down-
loaded due to a violation of the application risk policy.

13. The method of claim 11, further comprising:

determining the response to the application request based

on the application risk policy.

14. The method of claim 11, further comprising:

determining the response to the application request based

on the application risk policy, wherein the application
risk policy includes an application risk profile based on
behavior associated with the application.

15. The method of claim 11, further comprising:

intercepting application requests from a plurality of mobile

devices.

10

15

20

25

30

40

45

50

[

0

65

36

16. A system for in-line filtering of insecure or unwanted
mobile device communications for mobile devices, compris-
ing:

a hardware processor of an inline filtering device config-

ured to:

intercept a communication from a mobile device at the

in-line filtering device;

determine whether the communication from the mobile

device includes an insecure or unwanted mobile device
communication, wherein the communication from the
mobile device includes a request to search for an appli-
cation to download to the mobile device; and

throttle the communication at the inline filtering device

pending determination of a result of a risk analysis of the
application based on a traffic policy for mobile device
communications associated with the mobile device,
wherein the traffic policy for mobile device communi-
cations associated with the mobile device includes at
least one rule based at least in part on an application
search request, and wherein the communication is
blocked from completing a transfer of a response to the
communication to the mobile device while it is throttled
at the inline filtering device;

generate a risk score ofthe application as a result of the risk

analysis of the application based on the application risk
policy, wherein the generation of the risk score com-
prises:

check an application cache comprising:

determine whether the application has been previously

analyzed based on the application risk policy;
in the event that the application has been previously ana-
lyzed, determine whether a risk score of the application
is to be updated based on an updating rule that is trig-
gered if a last time that the application has been previ-
ously analyzed exceeds a configured setting; and
if the application has been previously analyzed and the
updating rule was triggered based on a determination
that one or more new rules or analysis are available to
perform on the application, then the application is to be
analyzed again based on the application risk policy, and

determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof;

in the event that the application has been previously ana-

lyzed, and

in the event that the updating rule was not triggered, return

a previously determined risk score of the application;
and

a memory coupled to the hardware processor and config-

ured to provide the hardware processor with instruc-
tions.

17. The system recited in claim 16, wherein the determi-
nation that the communication from the mobile device
includes an insecure or unwanted mobile device communica-
tion is based on the traffic policy associated with the mobile
device.

18. The system recited in claim 16, wherein the hardware
processor is further configured to:

block the communication from the mobile device if it is

determined that the communication from the mobile
device is an insecure or unwanted mobile device com-
munication based on the traffic policy for mobile device
communications.

19. The system recited in claim 16, wherein the communi-
cation from the mobile device includes an application search
request from the mobile device to a public application market.

US 9,178,852 B2

37

20. The system recited in claim 16, wherein the communi-
cation from the mobile device includes an application search
request from the mobile device to a public application market
notification, and wherein the processor is further configured
to:

modify a response to the application search request to filter

applications listed in the response based on an applica-
tion risk policy, wherein the modified response includes
anotification that one or more applications responsive to
the application search request were removed from the
response.

21. The system recited in claim 1, wherein check an appli-
cation cache further comprises:

generate a hash value of the application, wherein the hash

value can be used to query the application cache for a
match.

22. The system recited in claim 1, wherein check an appli-
cation cache further comprises:

query the application cache using a bulk query to request

checking the application cache for each of a plurality of
applications including the application requested for
downloading to the mobile device.

23. The system recited in claim 1, wherein the application
requested for downloading to the mobile device is an
encrypted version of the application, and wherein the hard-
ware processor is further configured to:

correlate the encrypted version of the application with an

unencrypted version of the application to match the
application with the unencrypted version of the applica-
tion based on a digital signature of an encrypted execut-
able image of the application.

24. The system recited in claim 1, wherein throttle the
request for downloading the application to the mobile device

10

15

20

25

30

38

includes quarantining the application at the inline filtering
device until receipt of an acknowledgement of potential
threats associated with the application are presented in a
display on the mobile device.
25. The system recited in claim 1, wherein the hardware
processor is further configured to:
if checking the application cache does not result in a match,
then the application was not previously analyzed based
on the application risk policy, and the generation of the
risk score further comprises:
determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof.
26. The system recited in claim 1, wherein the hardware
processor is further configured to:
if the application has been previously analyzed and the
updating rule was triggered, then the application is to be
analyzed again based on the application risk policy, and
the generation of the risk score further comprises:
determine whether the application includes previously
known malware, exhibits new malware behaviors, poses
a privacy or security risk based on the application risk
policy, or any combination thereof.
27. The system recited in claim 1, wherein the hardware
processor is further configured to:
determine whether the application is marked as private;
and
in the event the application is marked as private, do not
perform the check of the application cache, wherein the
application is marked as private to be hidden from appli-
cation cache queries.

#* #* #* #* #*

